برآورد انرژی مصرفی و سهم دستگاه‌های انرژی در ورزشکاران نخبۀ دفاع شخصی

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

هدف: هدف از این پژوهش برآورد انرژی مصرفی و سهم دستگاه‌های انرژی در ورزشکاران نخبۀ دفاع شخصی بود.
روش‌ها: به‌منظور برآورد انرژی مصرفی و سهم دستگاه‌های انرژی کل مبارزه، ابتدا 12 مرد ورزشکار نخبۀ دفاع شخصی (میانگین سنی ۴/۱±۶/۲۴سال، قد ۲/۲±۱/ سانتی‌متر۱۸۲، تودۀ بدن ۴۴/۲±۱/۷۸ کیلوگرم، درصد چربی %۵/۱±۸۳/۱۶) آزمون‌های اکسیژن مصرفی بیشینه و ضربان قلب بیشینۀ بروس را روی نوار گردان و میانگین ضربان قلب طی رقابت واقعی را روی تاتامی به‌منظور تعیین شدت انجام دادند، سپس  دو راند مبارزۀ ۳ دقیقه با فاصلۀ استراحتی ۱ دقیقه شبیه رقابت را انجام دادند. برای تعیین شدت نسبت کار به استراحت در طول مبارزه، کل زمان راند موردنظر فیلم‌برداری شد، سهم دستگاه‌های هوازی، فسفاژن و گلیکولیز بی‌هوازی به‌ترتیب از طریق مصرف اکسیژن در طول فعالیت، بخش سریع مصرف بیش از حد اکسیژن پس از فعالیت و تغییرات غلظت لاکتات خون در هر راند به‌دست آمد. برای بررسی طبیعی بودن داده‌ها از آزمون شپیرو-ویلک و برای بررسی تفاوت بین‌گروهی از تحلیل آزمون تی زوجی استفاده شد (۰۵/۰>P).
 نتایج: میانگین نسبت کار به استراحت حدود 1 به ۷/۱ بود. مقدار انرژی مطلق (kJ) و نسبی (%) دستگاه‌های هوازی، فسفاژن و گلیکولیز بی‌هوازی به‌ترتیب kJ۱۱±۱۲۲ (۴±۵۶%)، kJ۲±۶۹ (۲/۰±۳۲%) و kJ ۸±۲۴ (۳±۱۰%) بود.
نتیجه‌گیری: براساس نتایج پژوهش توصیه می‌شود در تمرینات و فرایند آموزش به‌طور کلی از دستگاه بی‌هوازی فسفاژن (به‌منظور انجام کار با شدت بالا) و دستگاه هوازی (به‌منظور بازیافت) برای به بیشینه رساندن عملکرد ورزشکار استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Determining the energy demands and contribution of the energy systems during self-defense in elite athletes

نویسندگان [English]

  • Ehsan Yousefalizadeh
  • Khosrow Ibrahim
  • Sajjad Ahmadizad
Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Purpose: The purpose of this study was to investigate the energy demands and contribution of the energy systems during self-defense in elite athletes. Twelve male self-defense elite athletes (age, 24 ± 1.4 yr, body mass: 78.1 ± 2.44 kg; percent of body fat, 16.83 ± 1.5 %) voluntarily participated in the study.
Methods: To estimate the energy contributions, and total energy cost of the fights, athletes VO2max, HRmax and HRmean, were obtained' using Bruce test on a treadmill. The athletes performed a simulated competition consisting of two (3 min) rounds with a (1 min) recovery in between each round. The combats were video recorded to quantify the actual time for fighting in each round. The contribution of the aerobic (WAER), anaerobic alactic (WPCR), and anaerobic lactic (W(La-1)) energy systems was estimated through the measurement of oxygen consumption during the activity and the fast component of excess post-exercise oxygen consumption (EPOC), and the change in blood lactate concentration were estimated in each round, respectively.
Results: The mean ratio of high intensity to actions of low intensity actions (attacks and no attacks) was 1:1.7. The WAER, WPCR and (W (La-1)) system contributions were estimated as 122 ± 11 kJ (56±4%), 69 ± 2 kJ (32 ± 0.2%), 24 ± 8 kJ (10 ± 3%), respectively.
Conclusion: Thus, training sessions for self-defense should be directed mainly toward improvement of the anaerobic alactic system (used with high intensity actions), and of the aerobic system (used with recovery between high-intensity actions).

کلیدواژه‌ها [English]

  • Energy systems
  • Oxygen consumption
  • Lactate
  • Combat sports
  • Self-defense
  1. Ousley, C.S., R.G. Shuford, and T. Roberts, How to Incorporate Self-Defense Instruction into Physical Activity Programs. Strategies, 2013. 26(3): p. 25-28.
  2. Competition rules of self-defense. (Cited 2016 November 12th); Available from: http://www.kempoikf.com/
  3. S Chiodo, A Tessitore, C Cortis, C Lupo., Effects of official Taekwondo competitions on all-out performances of elite athletes. The Journal of Strength & Conditioning Research, 2011. 25(2): p. 334-339.
  4. Bridge, C.A., M.A. Jones, and B. Drust, Physiological responses and perceived exertion during international Taekwondo competition. Int J Sports Physiol Perform, 2009. 4(4): p. 485-493.
  5. Butios, S. and N. Tasika, Changes in heart rate and blood lactate concentration as intensity parameters during simulated Taekwondo competition. Journal of sports medicine and physical fitness, 2007. 47(2): p. 179.
  6. E Bouhlel, A Jouini, N Gmada, A Nefzi, KB Abdallah, Heart rate and blood lactate responses during Taekwondo training and competition. Science & Sports, 2006. 21(5): p. 285-290.
  7. Degoutte, F., P. Jouanel, and E. Filaire, Energy demands during a judo match and recovery. British journal of sports medicine, 2003. 37(3): p. 245-249.
  8. H Chaabène, I Hellara, F Ben Ghali, Energetics of karate 370 kumite. Eur J Appl Physiol, 2004. 92(518-523): p. 371.
  9. di Prampero, P.E. and G. Ferretti, The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respiration physiology, 1999. 118(2): p. 103-115.
  10. C Doria, A Veicsteinas, E Limonta, MA Maggioni, Energetics of karate (kata and kumite techniques) in top-level athletes. European journal of applied physiology, 2009. 107(5): p. 603-610.
  11. Pluncevic, J., et al., HEART RATE’S RESPONSE DURING BRUCE TREADMIL TEST IN ADULT SOCCER PLAYERS. Age, 2015. 3(15.00): p. 85.00.
  12. Campos, F.A.D., et al., Energy demands in taekwondo athletes during combat simulation. European journal of applied physiology, 2012. 112(4): p. 1221-1228.
  13. Hausswirth, C., A. Bigard, and J. Le Chevalier, The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. International journal of sports medicine, 1997. 18(6): p. 449-453.
  14. Emerson Franchini , Stanislaw Sterkowicz , Urszula Szmatlan-Gabrys , Tomasz Gabrys , Michal Garnys., Energy system contributions to the special judo fitness test. Int J Sports Physiol Perform, 2011. 6(3): p. 334-343.
  15. de Campos Mello, F., et al., Energy systems contributions in 2,000 m race simulation: a comparison among rowing ergometers and water. European journal of applied physiology, 2009. 107(5): p. 615-619.
  16. Beneke, R., et al., How anaerobic is the Wingate Anaerobic Test for humans? European journal of applied physiology, 2002. 87(4-5): p. 388-392.
  17. Gastin, P.B., Energy system interaction and relative contribution during maximal exercise. Sports medicine, 2001. 31(10): p. 725-741.
  18. Santos, V.G., E. Franchini, and A.E. Lima-Silva, Relationship between attack and skipping in taekwondo contests. The Journal of Strength & Conditioning Research, 2011. 25(6): p. 1743-1751.
  19. Giovani Marcon, Emerson Franchini, José Roberto Jardim, Turibio Leite Barros Neto; Structural analysis of action and time in sports: Judo. Journal of Quantitative Analysis in Sports, 2010. 6(4).
  20. Markovic, G., V. Vucetic, and M. Cardinale, Heart rate and lactate responses to taekwondo fight in elite women performers. Biology of Sport, 2008. 25(2): p. 135.
  21. Glaister, M., Multiple sprints work. Sports medicine, 2005. 35(9): p. 757-777.
  22. Gunga, H.-C., Human Physiology in Extreme Environments, Season Three: Exercise physiology. 2014: Elsevier.

 

  1. Gaitanos, G.C., et al., Human muscle metabolism during intermittent maximal exercise. Journal of applied physiology, 1993. 75(2): p. 712-719.
  2. Antonio Crisafulli, Stefano Vitelli, Ivo Cappai, Raffaele Milia, Filippo Tocco, Franco Melis, Alberto Concu, Physiological responses and energy cost during a simulation of a Muay Thai boxing match. Applied Physiology, Nutrition, and Metabolism, 2009. 34(2): p. 143-150.
  3. Heller, J., et al., Physiological profiles of male and female taekwon-do (ITF) black belts. Journal of sports sciences, 1998. 16(3): p. 243-249.
  4. Matsushigue, K.A., K. Hartmann, and E. Franchini, Taekwondo: Physiological responses and match analysis. The Journal of Strength & Conditioning Research, 2009. 23(4): p. 1112-1117.