بررسی نقش فعالیت‌بدنی در طول عمر بر سلامت مغز افراد مبتلا به مالتیپل‌اسکلروزیس: شواهد برگرفته از تصویربرداری تشدید مغناطیسی و دیفیوژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1. گروه آموزش تربیت بدنی،دانشگاه فرهنگیان، صندوق پستی 889-14665 تهران، ایران

2 دانشکدۀ علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

3 مرکز تحقیقات مالتیپل‌اسکلروزیس، دانشگاه علوم پزشکی تهران، تهران، ایران

4 گروه حرکت شناسی و تغذیه، دانشگاه ایلینویز، شیکاگو، ایلینویز، ایالات متحده آمریکا

چکیده

زمینه و هدف: سبک زندگی یکی از مهمترین عوامل موثر بر سلامت انسان است. فعالیت بدنی در طول عمر می تواند یکی از مهمترین مولفه های سبک زندگی باشد که برای سلامت مغز افراد مبتلا به مالتیپل‌اسکلروزیس (ام‌اس) سودمند است. هدف از مطالعه حاضر بررسی نقش و ارتباط فعالیت بدنی فعلی و در طول عمر افراد مبتلا به ام‌اس با حجم و نشانگرهای زوال آکسون و میلین در هیپوکامپ، تالاموس، کورپوس‌کالوزوم و آمیگدال است.
مواد و روش‌ها: در این مطالعه 60 فرد مبتلا به ام‌اس (66% زن، 77% ام‌اس عودکننده-بهبودیابنده) با میانگین سن 3/9±3/37 سال و شاخص ناتوانی 1/1±2/2 شرکت کردند. حجم کلی مغز و نواحی مورد نظر بوسیله تصویربرداری تشدید مغناطیس (MRI) و پارامترهای نشانگر زوال میلین و آکسون بوسیله تصویربرداری تنسور دیفیوژن (DTI) ارزیابی شد. در تصویربرداری DTI، ناهمسانگردی کسری (FA، شاخصی از زوال آکسون ها) و متوسط نفوذ (MD، شاخصی از زوال میلین) ارزیابی شد. فعالیت‌بدنی فعلی و در طول‌عمر به‌ترتیب با استفاده از شتاب‌سنج و نسخه اقتباس‌شده پرسشنامه سابقه فعالیت اندازه‌گیری شد. همچنین، از آزمون همبستگی پیرسون و ضرایب همبستگی جزئی جهت تخمین ارتباط بین پارامترهای فعالیت‌بدنی و نشانگرهای MRI و DTI استفاده شد.
نتایج: حجم مغز، هیپوکامپ و کورپوس‌کالوزوم در شرکت‌کنندگانی که بیش از 4 ساعت در هفته فعالیت‌بدنی داشتند (شرکت کنندگان‌فعال) بطور معناداری بیشتر از سایر شرکت‌کنندگان بود (05/0 > p). همچنین، پارامتر FA در هیپوکامپ و کورپوس‌کالوزوم شرکت کنندگان فعال بطورمعناداری بیشتر بود (05/0 > p) درحالی که پارامتر MD فقط در ناحیه کورپوس‌کالوزوم در شرکت‌کنندگان بی‌تحرک بطور معنادار بیشتر بود (05/0 > p). ارتباط مثبت معناداری بین کل انرژی مصرفی در طول عمر و حجم کلی مغز (29/0 = r)، تالاموس (37/0 = r)، هیپوکامپ(73/0 = r) و کورپوس‌کالوزوم (69/0 = r) وجود داشت (05/0 > p). کل انرژی مصرفی بالاتر در طول‌عمر با بهبود نشانگرهای زوال میلین و آکسون در هیپوکامپ و کوروپوس‌کالوزوم همراه بود (05/0 > p). فعالیت‌بدنی متوسط تا شدید کنونی شرکت‌کنندگان ارتباط مثبت و معناداری با حجم تالاموس (37/0 = r)، هیپوکامپ (39/0 = r)، کورپوس‌کالوزوم (45/0 = r) و نشانگر زوال آکسون در کورپوس‌کالوزوم (75/0 = r) داشت (05/0 > p).
نتیجه‌گیری: مطالعه حاضر شواهد نوینی برای ارتباط مثبت بین فعالیت‌بدنی با حجم مغز و جلوگیری از زوال میلین و آکسون در افراد مبتلا به ا‌م‌اس ارائه می‌کند. یافته‌های حاضر از انجام فعالیت‌بدنی بیش از 4 ساعت در هفته با شدت های متنوع، به‌ویژه شدت متوسط تا شدید، جهت بهبود سلامت مغز افراد مبتلا به ام‌اس به عنوان یک درمان اصلاح کننده بیماری حمایت می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the role of lifetime physical activity on brain health in people with multiple sclerosis: Evidence from magnetic resonance and diffusion imaging

نویسندگان [English]

  • Raoof Negaresh 1
  • Reza Gharakhanlou 2
  • Mohammad Ali Sahraeian 3
  • Maryam Abolhassani 3
  • Robert Motl 4
1 Department of Physical education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
2 Tarbiat Modares University, Tehran, Iran
3 Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
چکیده [English]

Background and Purpose: Lifestyle is one of the most important factors affecting human health. Lifetime physical activity can be one of the most important components of lifestyle that is beneficial for brain health in people with multiple sclerosis (MS). The aim of the current study was to investigate the role and relationship of current and lifetime physical activity with the volume and markers of myelin and axon loss in the hippocampus, thalamus, corpus callosum, and amygdala in individuals with MS.
Methods & Materials: Sixty individuals with MS (66% female, 77% relapsing-remitting MS) with a mean age of 37.3±9.3 years and a disability index of 2.2±1.1, participated in this study. Whole brain volume and regions of interest were assessed by magnetic resonance imaging (MRI) and myelin and axonal loss parameters were assessed by diffusion tensor imaging (DTI). In DTI imaging, fractional anisotropy (FA, an indicator of axonal loss) and mean diffusion (MD, an indicator of myelin loss) were assessed. Current and lifetime physical activity were assessed using an accelerometer and an adapted version of the Activity History Questionnaire, respectively. Moreover, Pearson correlation and partial correlation coefficients were used to estimate the relationship of physical activity parameters with MRI and DTI markers.
Results: The brain, hippocampus and corpus callosum volume of participants who were physically active more than 4 hours/week (high active participants) was significantly greater compared to other participants (p<0.05). Moreover, the FA parameter was significantly higher in the hippocampus and corpus callosum of active participants (p<0.05), while the MD parameter was significantly higher only in the corpus callosum of sedentary participants (p<0.05). There was a significant (p<0.05) positive correlation between lifetime total energy expenditure and brain (r=0.29), thalamus (r=0.37), hippocampus (r=0.73) and corpus callosum volume (r=0.69). Higher lifetime total energy expenditure was associated with improved markers of myelin and axonal loss in the hippocampus and corpus callosum (p<0.05). Current moderate to vigorous physical activity was positively and significantly (p<0.05) associated with thalamus (r=0.37), hippocampus (r=0.39), corpus callosum volume (r=0.45) and markers of axonal loss in the corpus callosum (r=0.75).
Conclusions: The current study provides new evidence for the positive association between physical activity and brain volume and the prevention of myelin and axonal loss in individuals with MS. The present findings support performing physical activity for more than 4 hours per week at various intensities, especially moderate to vigorous intensity, as a means to improve brain health in individuals with MS as a disease-modifying treatment.
 
 
 

کلیدواژه‌ها [English]

  • Lifetime physical activity
  • diffusion tensor imaging
  • magnetic resonance imaging
  • multiple sclerosis
  1. 1. Pang B, Moullin JC, Thompson C, Thøgersen-Ntoumani C, Stamatakis E, McVeigh JA. Barriers and Facilitators to Participation in Vigorous Lifestyle Physical Activity in Adults Aged 55–75 Years: A Scoping Review. Journal of Aging and Physical Activity. 2024;32(3):446-59. DOI: 10.1123/japa.2022-0405
  2. 2. Woessner MN, Tacey A, Levinger-Limor A, Parker AG, Levinger P, Levinger I. The evolution of technology and physical inactivity: the good, the bad, and the way forward. Frontiers in public health. 2021;9:655491 DOI: 10.3389/fpubh.2021.655491.
  3. 3. Mirmosayyeb O, Shaygannejad V, Bagherieh S, Hosseinabadi AM, Ghajarzadeh M. Prevalence of multiple sclerosis (MS) in Iran: a systematic review and meta-analysis. Neurological Sciences. 2022;43:233-41. DOI: 10.1007/s10072-021-05750-w
  4. 4. Negaresh R, Motl RW, Mokhtarzade M, Dalgas U, Patel D, Shamsi MM, et al. Effects of exercise training on cytokines and adipokines in multiple sclerosis: a systematic review. Multiple sclerosis and related disorders. 2018;24:91-100. DOI: 10.1016/j.msard.2018.06.008
  5. 5. Negaresh R, Motl R, Zimmer P, Mokhtarzade M, Baker J. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies. European journal of neurology. 2019;26(5):711-21. DOI: 10.1111/ene.13929
  6. 6. Mokhtarzade M, Agha-Alinejad H, Motl RW, Negaresh R, Baker JS, Zimmer P. Weight control and physical exercise in people with multiple sclerosis: Current knowledge and future perspectives. Complementary therapies in medicine. 2019;43:240-6. DOI: 10.1177/1352458507079445
  7. 7. Learmonth YC, P Herring M, Russell DI, Pilutti LA, Day S, Marck CH, et al. Safety of exercise training in multiple sclerosis: an updated systematic review and meta-analysis. Multiple Sclerosis Journal. 2023;29(13):1604-31. DOI: 10.1177/13524585231204459
  8. 8. Snook EM, Motl RW. Effect of exercise training on walking mobility in multiple sclerosis: a meta-analysis. Neurorehabilitation and neural repair. 2009;23(2):108-16. DOI: 10.1177/1545968308320641
  9. 9. Negaresh R, Motl R, Mokhtarzade M, Ranjbar R, Majdinasab N, Khodadoost M, et al. Effect of short-term interval exercise training on fatigue, depression, and fitness in normal weight vs. overweight person with multiple sclerosis. Explore. 2019;15(2):134-41. DOI: 10.1016/j.explore.2018.07.007.
  10. 10. Latimer-Cheung AE, Pilutti LA, Hicks AL, Ginis KAM, Fenuta AM, MacKibbon KA, et al. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development. Archives of physical medicine and rehabilitation. 2013;94(9):1800-28. e3. DOI: 10.1016/j.apmr.2013.04.020.
  11. 11. Loprinzi PD, Harper J, Ikuta T. The effects of aerobic exercise on corpus callosum integrity: systematic review. The Physician and sportsmedicine. 2020;48(4):400-6. DOI: 10.1080/00913847.2020.1758545
  12. 12. Negaresh R, Gharakhanlou R, Sahraian MA, Abolhasani M, Motl RW, Zimmer P. Physical activity may contribute to brain health in multiple sclerosis: An MR volumetric and spectroscopy study. Journal of Neuroimaging. 2021;31(4):714-23. DOI: 10.1111/jon.12869
  13. 13. Pitteri M, Genova H, Lengenfelder J, DeLuca J, Ziccardi S, Rossi V, et al. Social cognition deficits and the role of amygdala in relapsing remitting multiple sclerosis patients without cognitive impairment. Multiple Sclerosis and Related Disorders. 2019;29:118-23. DOI: 10.1016/j.msard.2019.01.030
  14. 14. Negaresh R, Gharakhanlou R, Sahraian MA, Abolhasani M, Zimmer P. The effect of home-based exercise on the thalamic pathology and metabolites concentration in people with multiple sclerosis: Evidence from magnetic resonance imaging, spectroscopy and diffusion. Sport Physiology. 2022;14(54):117-46. DOI: 10.22089/spj.2021.9654.2087 [In Persian]
  15. 15. Kjølhede T, Siemonsen S, Wenzel D, Stellmann J-P, Ringgaard S, Pedersen BG, et al. Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis? Multiple Sclerosis Journal. 2018;24(10):1356-65. DOI: 10.1177/1352458517722645
  16. 16. Langeskov-Christensen M, Hvid LG, Nygaard MKE, Ringgaard S, Jensen HB, Nielsen HH, et al. Efficacy of high-intensity aerobic exercise on brain MRI measures in multiple sclerosis. Neurology. 2021;96(2):e203-e13. DOI: 10.1212/WNL.0000000000011241
  17. 17. Leavitt V, Cirnigliaro C, Cohen A, Farag A, Brooks M, Wecht J, et al. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings. Neurocase. 2014;20(6):695-7. DOI: 10.1080/13554794.2013.841951
  18. 18. Sbardella E, Tona F, Petsas N, Pantano P. DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Multiple sclerosis international. 2013;2013. DOI: 10.1155/2013/671730
  19. 19. Dhuli K, Naureen Z, Medori MC, Fioretti F, Caruso P, Perrone MA, et al. Physical activity for health. Journal of preventive medicine and hygiene. 2022;63(2 Suppl 3):E150. DOI: 10.15167/2421-4248/jpmh2022.63.2S3.2756
  20. 20. Sandroff B, Dlugonski D, Weikert M, Suh Y, Balantrapu S, Motl R. Physical activity and multiple sclerosis: new insights regarding inactivity. Acta Neurologica Scandinavica. 2012;126(4):256-62. DOI: 10.1111/j.1600-0404.2011.01634.x
  21. 21. Wesnes K, Myhr K-M, Riise T, Cortese M, Pugliatti M, Boström I, et al. Physical activity is associated with a decreased multiple sclerosis risk: The EnvIMS study. Multiple Sclerosis Journal. 2018;24(2):150-7. DOI: 10.1177/1352458517694088.
  22. 22. Geidl W, Gobster C, Streber R, Pfeifer K. A systematic critical review of physical activity aspects in clinical guidelines for multiple sclerosis. Multiple sclerosis and related disorders. 2018;25:200-7. DOI: 10.1016/j.msard.2018.07.039
  23. 23. Learmonth YC, Motl RW. Exercise training for multiple sclerosis: a narrative review of history, benefits, safety, guidelines, and promotion. International journal of environmental research and public health. 2021;18(24):13245. DOI: 10.3390/ijerph182413245
  24. 24. Mokhtarzade M, Shamsi MM, Abolhasani M, Bakhshi B, Sahraian MA, Soudi S. Lifetime physical activity is associated with gut bacteria and brain health in people with multiple sclerosis: Focus on physical activity intensity. Multiple Sclerosis and Related Disorders. 2022;59:103639. DOI: 10.1002/ana.22366.
  25. 25. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of neurology. 2011;69(2):292-302. DOI: 10.1002/ana.22366.
  26. 26. Engeroff T, Vogt L, Fleckenstein J, Füzéki E, Matura S, Pilatus U, et al. Lifespan leisure physical activity profile, brain plasticity and cognitive function in old age. Aging & mental health. 2019;23(7):811-8. DOI: 10.1080/13607863.2017.1421615
  27. 27. Jose KA, Blizzard L, Dwyer T, McKercher C, Venn AJ. Childhood and adolescent predictors of leisure time physical activity during the transition from adolescence to adulthood: a population based cohort study. International Journal of Behavioral Nutrition and Physical Activity. 2011;8:1-9 DOI: 10.1186/1479-5868-8-54.
  28. 28. Sandroff BM, Motl RW, Suh Y. Accelerometer output and its association with energy expenditure in persons with multiple sclerosis. Journal of Rehabilitation Research & Development. 2012;49(3). DOI: 10.1682/jrrd.2011.03.0063
  29. 29. Patenaude B, Smith SM, Kennedy DN, Jenkinson MJN. A Bayesian model of shape and appearance for subcortical brain segmentation. 2011;56(3):907-22. DOI: 10.1016/j.neuroimage.2011.02.046
  30. 30. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JCJN. A reproducible evaluation of ANTs similarity metric performance in brain image registration. 2011;54(3):2033-44. DOI: 10.1016/j.neuroimage.2010.09.025
  31. 31. Snaith RP. The hospital anxiety and depression scale. Health and quality of life outcomes. 2003;1(1):1-4. DOI: 10.1186/1477-7525-1-29
  32. 32. Cohen J. Statistical power analysis for the behavioral sciences: routledge; 2013. DOI: 10.4324/9780203771587
  33. 33. Kalron A, Menascu S, Hoffmann C, Achiron A. The importance of physical activity to preserve hippocampal volume in people with multiple sclerosis: a structural MRI study. Journal of Neurology. 2020;267:3723-30. DOI: 10.1007/s00415-020-10085-1
  34. 34. Ericksona KI, Vossb MW, Prakashd RS, Basake C, Szabof A, Chaddockb L, et al. Exercise training increases size of hippocampus and improves memory. PNAS. 2011;108(7):3017-22. DOI: 10.1073/pnas.1015950108
  35. 35. Abbasi M, Arghavanfar H, Hajinasab S, Nooraei A. Effects of aerobic exercise on demyelination and brain morphology in the cuprizone rat model of multiple sclerosis. Metabolic Brain Disease. 2024;39(7):1283-90. DOI: 10.1007/s11011-024-01377-w
  36. 36. Savšek L, Stergar T, Strojnik V, Alojz I, Koren A, Špiclin Ž, et al. Impact of aerobic exercise on clinical and magnetic resonance imaging biomarkers in persons with multiple sclerosis: An exploratory randomized controlled trial. Journal of rehabilitation medicine. 2021;53(4):2772. DOI: 10.2340/16501977-2814
  37. 37. Intzandt B, Vrinceanu T, Huck J, Vincent T, Montero-Odasso M, Gauthier CJ, et al. Comparing the effect of cognitive vs. exercise training on brain MRI outcomes in healthy older adults: A systematic review. Neuroscience & Biobehavioral Reviews. 2021;128:511-33. DOI: 10.1016/j.neubiorev.2021.07.003
  38. 38. Filippi M, Rovaris M, Inglese M, Barkhof F, De Stefano N, Smith S, et al. Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. The Lancet. 2004;364(9444):89-96. DOI: 10.1016/S0140-6736(04)17271-1
  39. 39. Wilckens KA, Stillman CM, Waiwood AM, Kang C, Leckie RL, Peven JC, et al. Exercise interventions preserve hippocampal volume: A meta‐ Hippocampus. 2021;31(3):335-47. DOI: 10.1002/hipo.23292
  40. 40. Torrico TJ, Munakomi S. Neuroanatomy, thalamus. 2019.
  41. 41. AbuHasan Q, Reddy V, Siddiqui W. Neuroanatomy, amygdala. 2019.
  42. 42. Morozumi T, Preziosa P, Meani A, Albergoni M, Margoni M, Pagani E, et al. Influence of cardiorespiratory fitness and MRI measures of neuroinflammation on hippocampal volume in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2024;95(1):29-36. DOI: 10.1136/jnnp-2023-331482
  43. 43. Morgan JA, Corrigan F, Baune BT. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. Journal of molecular psychiatry. 2015. 13-3:1. DOI: 10.1186/s40303-015-0010-8
  44. 44. Clark CM, Guadagni V, Mazerolle EL, Hill M, Hogan DB, Pike GB, et al. Effect of aerobic exercise on white matter microstructure in the aging brain. Behavioural brain research. 2019;373:112042. DOI: 10.1016/j.bbr.2019.112042
  45. 45. Islam MR, Luo R, Valaris S, Haley EB, Takase H, Chen YI, et al. Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice. Brain Plasticity. 2019;5(2):147-59. DOI: 10.3233/BPL-190090.
  46. 46. Marrie RA, Cohen J, Stuve O, Trojano M, Sørensen PS, Reingold S, et al. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Multiple Sclerosis Journal. 2015;21(3):263-81. DOI: 10.1177/1352458514564491
  47. 47. Su L, Zhang Z, Gao C, Guo A, Zhang M, Shi X, et al. Brain lesion characteristics in Chinese multiple sclerosis patients: A 7‐T MRI cohort study. Annals of Clinical and Translational Neurology. 2025;12(2):300-10. DOI: 10.1002/acn3.52256

 

 

 

 

 

 

 

 

 

 

 

 

  • تاریخ دریافت: 19 اسفند 1403
  • تاریخ بازنگری: 04 اردیبهشت 1404
  • تاریخ پذیرش: 31 اردیبهشت 1404
  • تاریخ اولین انتشار: 31 اردیبهشت 1404
  • تاریخ انتشار: 01 مهر 1404