تاثیر تمرین معلق TRX بر بیان پروتئین PAX7 عضله و شاخص های عملکردی زنان سالمند

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیولوژی ورزش، دانشکدۀ علوم ورزشی، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

زمینه و هدف: سالمندی موجب کاهش فیبرهای عضلانی و تعداد سلول های بنیادی و پتانسیل بازسازی آن می شود. تمرینات قدرتی به عنوان عاملی برای کاهش قدرت و عمکرد عضلات استفاده می‌شود. هدف پژوهش تاثیر شش هفته TRX بر میزان پروتئین PAX7 و شاخص‌های عملکردی قدرت، انعطاف پذیری، چابکی و استقامت قلبی تنفسی بالا و پایین تنه در زنان سالمند است.
مواد و روش ها: پژوهش حاضر به صورت کاربردی و شامل دو مرحله پیش آزمون و پس آزمون بود. 32 زن سالمند با میانگین سنی 16/5±5/62، میانگین قد 68/4±60/162، میانگین وزن 29/9±92/73 و با شاخص توده بدنی 38/3±97/27 به صورت تصادفی در دو گروه تمرین (16 n=) و کنترل (16 n=) قرارگرفتند. پروتکل تمرینات شامل شش هفته تمرینات TRX که در هر هفته دو جلسه دنبال می‌شد. 8 تمرین شامل انواع پارویی، اسکوات زیربغل، جلوبازو، پرس سینه، پرس سرشانه، اسکوات و جلوبازو، پشت بازو و اسکوات+زیربغل+جلوبازو به مدت 50 دقیقه انجام گرفت. همچنین شش آزمون‌ عملکردی فولرتون بعنوان متغیرهای وابسته بصورت پیش و پس آزمون مورد ارزیابی قرار گرفت. 48 ساعت قبل از شروع و پایان آخرین جلسه تمرین، خونگیری انجام گرفت. میزان پروتئین pax7 به روش الایزا اندازه گیری شد. پس از اثبات طبیعی بودن توزیع داده‌ها با استفاده از آزمون شاپیروویلک، آزمون لوین برای همگنی و از آزمون تحلیل کوواریانس یک راهه جهت تایید فرضیه ها با نرم افزار SPSS26 انجام گرفت.
نتایج: شش هفته تمرین مقاومتی TRX میزان پروتئین Pax7 را در گروه تمرین افزایش داد که این مقدار افزایش در گروه تمرین نسبت به کنترل معنی دار گزارش شد ( 001/0 = P ). همچنین برنامه تمرینات سبب افزایش معنی دار قدرت بالاتنه ( 011/0= P)، انعطاف بالاتنه ( 001/0= P)، انعطاف پایین تنه ( 001/0= P)، چابکی( 018/0= P) و استقامت قلبی – تنفسی ( 008/0= P) زنان سالمند شد. همچنین قابل ذکر است شش هفته تمرین مقاومتی TRX بر قدرت پایین تنه ( 479/0= P) تاثیر معنی دار نداشت.
نتیجه گیری: شش هفته تمرین TRX افزایش قابل توجهی درمیزان پروتئین Pax7 سطح سرمی زنان سالمند داشت و همچنین موجب بهبود در شاخص های عملکردی قدرت بالاتنه، انعطاف پذیری بالاتنه و پایین تنه و استقامت قلبی – تنفسی پس از شش هفته برنامه تمرینی داشت. باتوجه به نتایج به دست آمده از این پژوهش در خصوص فاکتورهای عملکردی، می‌توان از این روش تمرینی برای بهبود آمادگی عملکردی در افراد سالمند استفاده گردد. همچنین به دلیل عدم تاثیر این پروتکل بر قدرت پایین تنه زنان و با توجه به اهمیت زیاد قدرت پایین تنه در جلوگیری از زمین خوردن و بهبود کیفیت زندگی سالمندان پیشنهاد می‌شود تا از پروتکل تعدیل شده با تمرینات بیشتر و موثر بر اندام تحتانی جهت افزایش قدرت اندام تحتانی، ظرفیت عملکردی و کنترل وضعیتی سالمندان استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of TRX Suspension Training on PAX7 Muscle Protein Levels and Functional Markers in Elderly Women

نویسندگان [English]

  • Fatemeh Khazaeeli
  • Mojtaba Salehpour
  • Arezu Eskandari Shahrabi
Department of Sports Physiology, Faculty of Sports Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده [English]

Background and Purpose: Aging leads to a reduction in muscle fibers, the number of stem cells, and their regenerative potential Strength training is utilized as a factor to enhance muscle strength and performance. This study aimed to investigate the effect of six weeks of TRX training on paired box 7 (PAX7) protein levels and functional performance indices of upper and lower body strength, flexibility, agility, and cardiorespiratory endurance in elderly women.
Materials and Methods: This applied research utilized a pre-test/post-test design. Thirty-two elderly women (age, 62.5 ± 5.16 years; height,162.60 ± 4.68 cm; weight 73.92 ± 9.29 kg; body mass index, 27.97 ± 3.38 kg/m2) were randomly assigned to either a training group (n = 16) or a control group (n = 16). The training protocol consisted of six weeks of TRX exercises, two sessions per week. Eight exercises, including various rows, assisted squats, biceps curls, chest presses, shoulder presses, squats, triceps extensions, and a squat-biceps curl-row combination, were performed for 50 minutes per session. Six Fullerton functional fitness tests were administered as dependent variables in both the pre-test and post-test. Blood samples were collected 48 hours before the first session and after the last session. PAX7 protein levels were measured using the ELISA method. Following confirmation of data normality using the Shapiro-Wilk test and homogeneity of variance using Leven's test, a one-way analysis of covariance (ANCOVA) was conducted using SPSS 26 to test the hypotheses.
Results: Six weeks of TRX resistance training significantly increased PAX7 protein levels in the training group compared to the control group (p= 0.001). Furthermore, the training program significantly improved upper body strength (p = 0.011), upper body flexibility (p = 0.001), lower body flexibility (p = 0.001), agility (p = 0.018), and cardiorespiratory endurance (p = 0.008) in the elderly women. However, six weeks of TRX resistance training did not significantly affect lower body strength (p = 0.479).
Conclusion: Six weeks of TRX training resulted in a significant increase in serum PAX7 protein levels in elderly women and improved functional performance indices of upper body strength, upper and lower body flexibility, and cardiorespiratory endurance. Based on these findings, TRX training can be utilized to enhance functional fitness in elderly individuals. However, given the lack of significant impact on lower body strength and its critical role in preventing falls and improving quality of life, it is recommended to implement a modified protocol with more targeted lower body exercises to enhance lower limb strength, functional capacity, and postural control in elderly populations

کلیدواژه‌ها [English]

  • TRX Training
  • Elderly women
  • PAX7 Protein
  • Upper and Lower Body Functional Performance Indices
  1. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166(4):822-39.
  2. Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants. 2023;12(3):651.
  3. Zhu Y, Chen X, Geng S, Li Q, Li Y, Yuan H, et al. Identification of the cuproptosis-related hub genes and therapeutic agents for sarcopenia. Frontiers in Genetics. 2023;14:1136763.
  4. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. The Lancet. 2019;393(10191):2636-46.
  5. Ziaaldini MM, Marzetti E, Picca A, Murlasits Z. Biochemical pathways of sarcopenia and their modulation by physical exercise: a narrative review. Frontiers in Medicine. 2017;4:167.
  6. Landi F, Calvani R, Cesari M, Tosato M, Martone AM, Ortolani E, et al. Sarcopenia: an overview on current definitions, diagnosis and treatment. Current Protein and Peptide Science. 2018;19(7):633-8.
  7. Marzetti E, Calvani R, Lorenzi M, Marini F, D'Angelo E, Martone AM, et al. Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older hip fractured patients. Experimental gerontology. 2014;60:79-82.
  8. Mijnarends DM, Koster A, Schols JM, Meijers JM, Halfens RJ, Gudnason V, et al. Physical activity and incidence of sarcopenia: the population-based AGES—Reykjavik Study. Age and ageing. 2016;45(5):614-20.
  9. Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, Van Loon LJ. Satellite cells in human skeletal muscle; from birth to old age. Age. 2014;36:545-57.
  10. Parker MH. The altered fate of aging satellite cells is determined by signaling and epigenetic changes. Frontiers in genetics. 2015;6:59.
  11. Domingues-Faria C, Vasson M-P, Goncalves-Mendes N, Boirie Y, Walrand S. Skeletal muscle regeneration and impact of aging and nutrition. Ageing research reviews. 2016;26:22-36.
  12. Fuchs E, Blau HM. Tissue stem cells: architects of their niches. Cell stem cell. 2020;27(4):532-56.
  13. Kaczmarek A, Kaczmarek M, Ciałowicz M, Clemente FM, Wolański P, Badicu G, et al. The role of satellite cells in skeletal muscle regeneration—the effect of exercise and age. Biology. 2021;10(10):1056.
  14. Feige P, Brun CE, Ritso M, Rudnicki MA. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease. Cell stem cell. 2018;23(5):653-64.
  15. Rodrigues F, Domingos C, Monteiro D, Morouço P. A review on aging, sarcopenia, falls, and resistance training in community-dwelling older adults. International journal of environmental research and public health. 2022;19(2):874.
  16. Cisterna B, Giagnacovo M, Costanzo M, Fattoretti P, Zancanaro C, Pellicciari C, et al. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. Journal of anatomy. 2016;228(5):771-83.
  17. Wiedmer P, Jung T, Castro JP, Pomatto LC, Sun PY, Davies KJ, et al. Sarcopenia–Molecular mechanisms and open questions. Ageing research reviews. 2021;65:101200.
  18. Rodrigues F, Jacinto M, Figueiredo N, Monteiro AM, Forte P. Effects of a 24-Week Low-Cost Multicomponent Exercise Program on Health-Related Functional Fitness in the Community-Dwelling Aged and Older Adults. Medicina. 2023;59(2):371.
  19. Liu B, Qu J, Zhang W, Belmonte JCI, Liu G-H. A stem cell aging framework, from mechanisms to interventions. Cell reports. 2022;41(3).
  20. Cho M-R, Lee S, Song S-K. A review of sarcopenia pathophysiology, diagnosis, treatment and future direction. Journal of Korean Medical Science. 2022;37(18).
  21. Dent E, Morley J, Cruz-Jentoft A, Arai H, Kritchevsky S, Guralnik J, et al. International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. The journal of nutrition, health & aging. 2018;22:1148-61.
  22. Liu C, Wu X, Vulugundam G, Gokulnath P, Li G, Xiao J. Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. Sports Medicine-Open. 2023;9(1):27.
  23. Izquierdo M, Merchant R, Morley J, Anker S, Aprahamian I, Arai H, et al. International exercise recommendations in older adults (ICFSR): expert consensus guidelines. The journal of nutrition, health & aging. 2021;25(7):824-53.
  24. Merchant RA, Chan YH, Hui RJY, Lim JY, Kwek SC, Seetharaman SK, et al. Possible sarcopenia and impact of dual-task exercise on gait speed, handgrip strength, falls, and perceived health. Frontiers in medicine. 2021;8:660463.
  25. Pierle C, McDaniel AT, Schroeder LH, Heijnen MJ, Tseh W. Efficacy of a 6-Week Suspension Training Exercise Program on Fitness Components in Older Adults. International Journal of Exercise Science. 2022;15(3):1168.
  26. Dewi L, Lin Y-C, Nicholls A, Condello G, Huang C-Y, Kuo C-H. Pax7+ Satellite Cells in Human Skeletal Muscle After Exercise: A Systematic Review and Meta-analysis. Sports Medicine. 2023;53(2):457-80.
  27. Bjersing JL, Larsson A, Palstam A, Ernberg M, Bileviciute-Ljungar I, Löfgren M, et al. Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin. BMC musculoskeletal disorders. 2017;18:1-9.
  28. Snijders T, Nederveen JP, Bell KE, Lau SW, Mazara N, Kumbhare DA, et al. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. The Journal of physiology. 2019;597(1):105-19.
  29. Bazgir B, Fathi R, Valojerdi MR, Mozdziak P, Asgari A. Satellite cells contribution to exercise mediated muscle hypertrophy and repair. Cell Journal (Yakhteh). 2017;18(4):473.
  30. Moghadam B, Bagheri R, Ashtary-Larky D, Tinsley G, Eskandari M, Wong A, et al. The effects of concurrent training order on satellite cell-related markers, body composition, muscular and cardiorespiratory fitness in older men with sarcopenia. The journal of nutrition, health & aging. 2020;24:796-804.
  31. Chen W, Datzkiw D, Rudnicki MA. Satellite cells in ageing: use it or lose it. Open biology. 2020;10(5):200048.
  32. Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, Van Loon LJ, et al. Satellite cells in human skeletal muscle plasticity. Frontiers in physiology. 2015;6:283.
  33. Campa F, Silva AM, Toselli S. Changes in phase angle and handgrip strength induced by suspension training in older women. International journal of sports medicine. 2018;39(06):442-9.
  34. Emerson NS, Stout JR, Fukuda DH, Robinson EH, Scanlon TC, Beyer KS, et al. Resistance training improves capacity to delay neuromuscular fatigue in older adults. Archives of gerontology and geriatrics. 2015;61(1):27-32.
  35. Lee D-K, Kang M-H, Lee T-S, Oh J-S. Relationships among the Y balance test, Berg Balance Scale, and lower limb strength in middle-aged and older females. Brazilian journal of physical therapy. 2015;19:227-34.
  36. Carneiro NH, Ribeiro AS, Nascimento MA, Gobbo LA, Schoenfeld BJ, Achour Junior A, et al. Effects of different resistance training frequencies on flexibility in older women. Clinical interventions in aging. 2015:531-8.
  37. Fernández-Lezaun E, Schumann M, Mäkinen T, Kyröläinen H, Walker S. Effects of resistance training frequency on cardiorespiratory fitness in older men and women during intervention and follow-up. Experimental Gerontology. 2017;95:44-53.
  38. Romero-Arenas S, Martínez-Pascual M, Alcaraz PE. Impact of resistance circuit training on neuromuscular, cardiorespiratory and body composition adaptations in the elderly. Aging and disease. 2013;4(5):256.
  39. Brook MS, Wilkinson DJ, Tarum J, Mitchell KW, Lund JL, Phillips BE, et al. Neither myonuclear accretion nor a myonuclear domain size ceiling is a feature of the attenuated hypertrophic potential of aged human skeletal muscle. GeroScience. 2023;45(1):451-62.
  • تاریخ دریافت: 15 آذر 1403
  • تاریخ بازنگری: 10 اسفند 1403
  • تاریخ پذیرش: 13 اسفند 1403
  • تاریخ اولین انتشار: 13 اسفند 1403
  • تاریخ انتشار: 01 تیر 1404