اثر هشت هفته تمرین مقاومتی بر سطوح BDNF و عملکرد حافظه زنان میانسال مبتلا به سندروم متابولیک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار گروه تربیت بدنی و علوم ورزشی دانشگاه سمنان

2 کارشناسی ارشد تربیت بدنی و علوم ورزشی دانشگاه سمنان

چکیده

مقدمه و هدف: هدف از تحقیق حاضر بررسی اثر هشت هفته تمرین مقاومتی بر سطوح BDNF و عملکرد حافظه زنان میانسال مبتلا به سندروم متابولیک بود. روش شناسی: 22 زن داوطلب میانسال مبتلا به سندروم متابولیک به صورت نمونه‌گیری در دسترس، گزینش شدند و به طور تصادفی به دو گروه تمرین (تعداد=12، 14/5 ± 08/43 سال، 16/7 ± 13/74 کیلوگرم) و گروه کنترل (تعداد=10، 53/4 ± 9/39 سال، 61/11 ± 23/82 کیلوگرم) تقسیم شدند. آزمودنی‌های گروه تمرین به مدت هشت هفته و سه روز در هر هفته به تمرین مقاومتی پرداختند. تمرین شامل سه نوبت هشت تا ده تکراری (75% -80% 1RM) با در نظر گرفتن اصل اضافه بار بود. در مراحل پیش‌ازمون و پایان تمرین، آزمون‌های عملکرد حافظه کوتاه‌مدت و میان­مدت و بلندمدت و همچنین خون­گیری انجام شد. داده‌ها با استفاده از آزمون‌های تی مستقل، تی وابسته و آنالیز واریانس با اندازه‌گیری مکرر 2×2 با سطح معنی داری 05/0 P≤تجزیه و تحلیل شدند. یافته‌ها: تغییر معنی‌داری در سطوح BDNF و حافظه میان مدت در دو گروه تمرین و کنترل مشاهده نشد (05/0P≥). نتایج آزمون  tوابسته افزایش معنی‌داری در گروه تمرین در حافظه کوتاه‌مدت و بلندمدت نشان داد (05/0P≤)، اما پس از بررسی اثر تعاملی تمرین تغییرات معنی‌داری مشاهده نشد(05/0P≥). نتیجه گیری: با وجود اینکه BDNF به عنوان یک متابوتروفین، میانجی اثرات ورزش بر عملکرد شناختی شناخته شده است؛ اما هشت هفته تمرین مقاومتی نمی‌تواند اثر مطلوبی بر افزایش BDNF و عملکرد حافظه در زنان میانسال مبتلا به سندروم متابولیک داشته باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of 8 weeks resistance training on serum BDNF level and memory performance in middle-aged women with metabolic syndrome

چکیده [English]



Background: The purpose of this study to verify the effects of resistance training on Serum BDNF Level and
Memory Performance in Middle-aged Women with Metabolic Syndrome. Methodology: 22 volunteers
middle-age woman with metabolic syndrome for sampling, were selected and randomly assigned to a
resistance training protocol (n = 12, 43.08 ± 5.14 years, 74.13 ± 7.16 kg) or a control group (n = 10, 39.9 ±
4.53 years, 82.23 ± 11.61 kg). In the resistance training protocol, ten exercises were performed, with 3 × 8–10
maximal repetitions three times per week (75%_80% 1RM) With regard to the principle of overload. Short
term, midterm and long term memory tests and also blood sampling were conducted before and after training.
Data were analyzed using independent and depended t-test, analysis of variance with repeated measures 2 × 2
with the level of statistical significance was set at P ≤ 0.05. Results: No significant changes in the levels of
BDNF and midterm memory in the control and exercise and control groups was not observed (P ≥ 0.05).The
dependent t test results showed a significant decrease in short term and long term memory in the exercise
group (P ≤ 0.05), but after interactive exercise effect no significant changes was not observed (P ≥ 0.05).
Conclusion: In spite of the fact the BDNF as a metatrophin, mediating the effects of exercise on cognitive
function is known, but eight weeks of resistance training cannot have a favorable effect on increasing BDNF
and memory function in middle-aged women with metabolic syndrome.

کلیدواژه‌ها [English]

  • Resistance training
  • BDNF
  • memory performance
  • middle-age women
  • metabolic syndrome
  1. Allan, R., et al. (2013). "Exercise and Bdnf Production as a Future Treatment for Alzheimer’s Disease."
  2. Okosun IS, Annor F, Esuneh F, Okoegwale EE.
  3. (2013) Metabolic syndrome and impaired healthrelated
  4. quality of life and in non-Hispanic White,
  5. non-Hispanic Blacks and Mexican-American
  6. Adults. Diabetes & Metabolic Syndrome:
  7. Clinical Research & Reviews.7(3):154-60.
  8. Raffaitin C, Gin H, Empana J-P, Helmer C, Berr
  9. C, Tzourio C, et al.(2009). Metabolic Syndrome
  10. and Risk for Incident Alzheimer's Disease or
  11. Vascular Dementia The Three-City Study.
  12. Diabetes care.32(1):169-74.
  13. Baker LD, Cross DJ, Minoshima S, Belongia D,
  14. Watson GS, Craft S. (2011) Insulin resistance
  15. and Alzheimer-like reductions in regional
  16. cerebral glucose metabolism for cognitively
  17. normal adults with prediabetes or early type 2
  18. diabetes. Archives of neurology.68(1):51-7.
  19. Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi
  20. K, Matsui Y, et al. (2010). Insulin resistance is
  21. associated with the pathology of Alzheimer disease
  22. The Hisayama Study. Neurology.75(9):764-70.
  23. Schrijvers EM, Witteman J, Sijbrands E, Hofman
  24. A, Koudstaal P, Breteler M.( 2010). Insulin
  25. metabolism and the risk of Alzheimer disease
  26. The Rotterdam Study. Neurology.75(22):1982-7.
  27. Dik MG, Jonker C, Comijs HC, Deeg DJ, Kok
  28. A, Yaffe K, et al. (2007) Contribution of
  29. metabolic syndrome components to cognition in
  30. older individuals. Diabetes care.30(10):2655-60.
  31. Yaffe K. (2007) Metabolic syndrome and
  32. cognitive disorders: is the sum greater than its
  33. parts? Alzheimer Disease & Associated
  34. Disorders.21(2):167-71.
  35. Xu B, Goulding EH, Zang K, Cepoi D, Cone
  36. RD, Jones KR, et al. (2003) Brain-derived
  37. neurotrophic factor regulates energy balance
  38. downstream of melanocortin-4 receptor. Nature
  39. neuroscience. 6(7):736-42.
  40. Nonomura T, Tsuchida A, Ono-Kishino M,
  41. Nakagawa T, Taiji M, Noguchia H. (2001)
  42. Brain-derived neurotrophic factor regulates
  43. energy expenditure through the central nervous
  44. system in obese diabetic mice. Experimental
  45. Diabetes Research.2(3):201-9.
  46. Tsuchida A, Nonomura T, Nakagawa T, Itakura
  47. Y, Ono‐Kishino M, Yamanaka M, et al. (2002)
  48. Brain‐derived neurotrophic factor ameliorates
  49. lipid metabolism in diabetic mice. Diabetes,
  50. Obesity and Metabolism. 4(4):262-9.
  51. Correia PR, Scorza FA, da Silva SG, Pansani A,
  52. Toscano-Silva M, de Almeida AC, et al. (2011)
  53. Increased basal plasma brain-derived neurotrophic
  54. factor levels in sprint runners. Neuroscience
  55. bulletin. 27(5):325-9.
  56. Yamada K, Nabeshima T. (2003) Brain-derived
  57. neurotrophic factor/TrkB signaling in memory
  58. processes. Journal of pharmacological sciences.
  59. (4):267-70.
  60. Benraiss A, Chmielnicki E, Lerner K, Roh D,
  61. Goldman SA. (2001) Adenoviral brain-derived
  62. neurotrophic factor induces both neostriatal and
  63. olfactory neuronal recruitment from endogenous
  64. progenitor cells in the adult forebrain. The
  65. Journal of Neuroscience. 21(17):6718-31.
  66. Zuccato C, Cattaneo E. (2009) Brain-derived
  67. ابراهیمی و همکاران
  68. neurotrophic factor in neurodegenerative
  69. diseases. Nature Reviews Neurology.5(6):311-
  70.  
  71. Noble EE, Billington CJ, Kotz CM, Wang C.
  72. (2011) The lighter side of BDNF. American
  73. Journal of Physiology-Regulatory, Integrative
  74. and Comparative Physiology. 300(5):R1053-
  75. R69.
  76. Knaepen K, Goekint M, Heyman EM, Meeusen
  77. R. (2010) Neuroplasticity - exercise-induced
  78. response of peripheral brain-derived
  79. neurotrophic factor: a systematic review of
  80. experimental studies in human subjects. Sports
  81. medicine (Auckland, NZ). 40(9):765-801.
  82. Lommatzsch M, Zingler D, Schuhbaeck K,
  83. Schloetcke K, Zingler C, Schuff-Werner P, et al.
  84. (2005) The impact of age, weight and gender on
  85. BDNF levels in human platelets and plasma.
  86. Neurobiology of aging.26(1):115-23.
  87. Allan R, Collino T, Oluwarounke H. (2013)
  88. Exercise and Bdnf Production as a Future
  89. Treatment for Alzheimer’s Disease.
  90. Goekint M, Heyman E, Roelands B, Njemini R,
  91. Bautmans I, Mets T, et al. (2008). No influence
  92. of noradrenaline manipulation on acute exerciseinduced
  93. increase of brain-derived neurotrophic
  94. factor. Med Sci Sports Exerc.40(11):1990-6.
  95. Zoladz J, Pilc A, Majerczak J, Grandys M,
  96. Zapart-Bukowska J, Duda K. (2008) Endurance
  97. training increases plasma brain-derived
  98. neurotrophic factor concentration in young
  99. healthy men. J Physiol Pharmacol. 59(Suppl
  100. :119-32.
  101. Vega SR, Strüder HK, Wahrmann BV, Schmidt
  102. A, Bloch W, Hollmann W. (2006) Acute BDNF
  103. and cortisol response to low intensity exercise
  104. and following ramp incremental exercise to
  105. exhaustion in humans. Brain research.
  106. (1):59-65.
  107. Ferris LT, Williams JS, Shen C-L. (2007) The
  108. effect of acute exercise on serum brain-derived
  109. neurotrophic factor levels and cognitive function.
  110. Medicine and science in sports and
  111. exercise.39(4):728-34.
  112. Tang SW, Chu E, Hui T, Helmeste D, Law C.(
  113. . Influence of exercise on serum brainderived
  114. neurotrophic factor concentrations in
  115. healthy human subjects. Neuroscience letters.
  116. (1):62-5.
  117. Rasmussen P, Brassard P, Adser H, Pedersen
  118. MV, Leick L, Hart E, et al. (2009) Evidence for a
  119. release of brain‐derived neurotrophic factor from
  120. the brain during exercise. Experimental
  121. physiology. 94(10):1062-9.
  122. Winter B, Breitenstein C, Mooren FC, Voelker
  123. K, Fobker M, Lechtermann A, et al. (2007) High
  124. impact running improves learning. Neurobiology
  125. of learning and memory. 87(4):597-609.
  126. Yarrow JF, White LJ, McCoy SC, Borst SE.
  127. (2010). Training augments resistance exercise
  128. induced elevation of circulating brain derived
  129. neurotrophic factor (BDNF). Neuroscience
  130. letters. 479(2):161-5.
  131. Schiffer T, Schulte S, Hollmann W, Bloch W,
  132. Struder HK. (2009). Effects of strength and
  133. endurance training on brain-derived neurotrophic
  134. factor and insulin-like growth factor 1 in
  135. humans. Hormone and metabolic research =
  136. Hormon- und Stoffwechselforschung =
  137. Hormones et metabolisme. 41(3):250-4.
  138. Schulz KH, Gold SM, Witte J, Bartsch K, Lang
  139. UE, Hellweg R, et al. (2004). Impact of aerobic
  140. training on immune-endocrine parameters,
  141. neurotrophic factors, quality of life and
  142. coordinative function in multiple sclerosis.
  143. Journal of the neurological sciences. 225(1-
  144. :11-8.
  145. Castellano V, White LJ. (2008). Serum brainderived
  146. neurotrophic factor response to aerobic
  147. exercise in multiple sclerosis. Journal of the
  148. neurological sciences.269(1):85-91.
  149. Correia PR, Pansani A, Machado F, Andrade M,
  150. Silva AC, Scorza FA, et al. (2010). Acute
  151. strength exercise and the involvement of small or
  152. large muscle mass on plasma brain-derived
  153. neurotrophic factor levels. Clinics (Sao Paulo,
  154. Brazil). 65(11):1123-6.
  155. Goekint M, De Pauw K, Roelands B, Njemini R,
  156. Bautmans I, Mets T, et al. (2010) Strength
  157. training does not influence serum brain-derived
  158. neurotrophic factor. European journal of applied
  159. physiology. 110(2):285-93.
  160. Cao L, Lin E-JD, Cahill MC, Wang C, Liu X,
  161. During MJ. (2009). Molecular therapy of obesity
  162. and diabetes by a physiological autoregulatory
  163. approach. Nature medicine. 15(4):447-54.
  164. Wilson RS, Schneider JA, Bienias JL, Evans
  165. DA, Bennett DA. (2003). Parkinsonianlike signs
  166. and risk of incident Alzheimer disease in older
  167. persons. Archives of neurology. 60(4):539-44.
  168. Smith PJ, Blumenthal JA, Hoffman BM, Cooper
  169. H, Strauman TA, Welsh-Bohmer K, et al.( 2010).
  170. Aerobic exercise and neurocognitive performance:
  171. a meta-analytic review of randomized controlled
  172. trials. Psychosomatic medicine. 72(3):239.
  173. Raschetti R, Albanese E, Vanacore N, Maggini
  174. M. (2007). Cholinesterase inhibitors in mild
  175. cognitive impairment: a systematic review of
  176. randomised trials. PLoS medicine. 4(11):e338.
  177. Lachman ME, Neupert SD, Bertrand R, Jette
  178. و عملکرد حافظه زنان میانسال ... 1323 BDNF اثر هشت هفته تمرین مقاومتی بر سطوح
  179. AM. (2006). The effects of strength training on
  180. memory in older adults. Journal of aging and
  181. physical activity. 14(1):59-73.
  182. Leff P, Romo H, Matus M, Hernandez A, Calva
  183. JC, Acevedo R, et al. (2002). Understanding the
  184. neurobiological mechanisms of learning and
  185. memory: memory systems of the brain, longterm
  186. potentiation and synaptic plasticity. Part III
  187. B. Salud Mental. 25(3):64-76.
  188. Expert Panel on Detection E. (2001). Executive
  189. summary of the third report of the National
  190. Cholesterol Education Program (NCEP) expert
  191. panel on Detection, Evaluation, and Treatment of
  192. high blood cholesterol in adults (Adult Treatment
  193. Panel III). Jama. 285(19):2486.
  194. Brzycki M. (1993). Strength testing—predicting
  195. a one-rep max from reps-to-fatigue. Journal of
  196. Physical Education, Recreation & Dance.
  197. (1):88-90.
  198. Conceicao MS, Bonganha V, Vechin FC, de
  199. Barros Berton RP, Lixandrão ME, Nogueira
  200. FRD, et al. (2013). Sixteen weeks of resistance
  201. training can decrease the risk of metabolic
  202. syndrome in healthy postmenopausal women.
  203. Clinical interventions in aging. 8:1221.
  204. Stone MH, O'Bryant H, Garhammer J, McMillan
  205. J, Rozenek R.( 1982). A Theoretical Model of
  206. Strength Training. Strength & Conditioning
  207. Journal. 4(4):36-9.
  208. Brown LE, Weir JP.( 2001). Asep Procedures
  209. Recommendation I: Accurate Assessment of
  210. Muscular Strength and Power. Professionalization
  211. of Exercise Physiology. 4(11).
  212. Marnat G. (2005). Psychological Evaluation
  213. Guidelines for clinical psychologists, counselors
  214. and psychiatrists. Translation by Mohammad
  215. Hassan Pasha Sharifi and Mohammad Reza
  216. Nikkhou Tehran: Growth Publication(Persian).
  217. Deschenes MR, Kraemer WJ. (2002).
  218. Performance and physiologic adaptations to
  219. resistance training. American Journal of Physical
  220. Medicine & Rehabilitation. 81(11):S3-S16.
  221. Levinger I, Goodman C, Matthews V, Hare DL,
  222. Jerums G, Garnham A, et al. (2008). BDNF,
  223. metabolic risk factors, and resistance training in
  224. middle-aged individuals. Med Sci Sports Exerc.
  225. (3):535-41.
  226. Coelho F, Pereira D, Lustosa L, Silva J, Dias J,
  227. Dias R, et al. (2012) Physical therapy intervention
  228. (PTI) increases plasma brain-derived neurotrophic
  229. factor (BDNF) levels in non-frail and pre-frail
  230. elderly women. Archives of gerontology and
  231. geriatrics. 54(3):415-20.
  232. Matthews V, Åström M-B, Chan M, Bruce C,
  233. Krabbe K, Prelovsek O, et al. (2009).Brainderived
  234. neurotrophic factor is produced by
  235. skeletal muscle cells in response to contraction
  236. and enhances fat oxidation via activation of
  237. AMP-activated protein kinase. Diabetologia.
  238. (7):1409-18.
  239. Parnow A, Karimi I, Hosseini SA. (2015). Effect
  240. of Resistance Training on Plasma Brain Derived
  241. Neurotrophic Factor Levels in Rats. Journal of
  242. Knowledge & Health; VOL 10, NO 3:2015.
  243. Babaei P, damirchi a, Azali Alamdari K. (2013).
  244. Effects of Endurance Training and Detraining on
  245. Serum BDNF and Memory Performance in
  246. Middle Aged Males with Metabolic Syndrome.
  247. Iranian Journal of Endocrinology and
  248. Metabolism. 15(2):132-42.
  249. Suwa M, Kishimoto H, Nofuji Y, Nakano H,
  250. Sasaki H, Radak Z, et al. (2006). Serum brainderived
  251. neurotrophic factor level is increased and
  252. associated with obesity in newly diagnosed
  253. female patients with type 2 diabetes mellitus.
  254. Metabolism. 55(7):852-7.
  255. Ramsbottom R, Currie J, Gilder M. (2010).
  256. Relationships between components of physical
  257. activity, cardiorespiratory fitness, cardiac
  258. autonomic health, and brain-derived neurotrophic
  259. factor. Journal of sports sciences. 28(8):843-9.
  260. Golden E, Emiliano A, Maudsley S, Windham
  261. BG, Carlson OD, Egan JM, et al. (2010).
  262. Circulating brain-derived neurotrophic factor and
  263. indices of metabolic and cardiovascular health:
  264. data from the Baltimore Longitudinal Study of
  265. Aging. PloS one. 5(4):e10099.
  266. Arentoft A, Sweat V, Starr V, Oliver S,
  267. Hassenstab J, Bruehl H, et al. (2009). Plasma
  268. BDNF is reduced among middle-aged and
  269. elderly women with impaired insulin function:
  270. evidence of a compensatory mechanism. Brain
  271. and cognition. 71(2):147-52.
  272. Chang Y-K, Pan C-Y, Chen F-T, Tsai C-L,
  273. Huang C-C. (2012). Effect of resistance exercise
  274. training on cognitive function in healthy older
  275. adults: a review. Journal of aging and physical
  276. activity. 20(4):497-517.
  277. Colcombe S, Kramer AF. (2003). Fitness effects
  278. on the cognitive function of older adults a metaanalytic
  279. study. Psychological science. 14(2):125-
  280.  
  281. Solfrizzi V, Scafato E, Capurso C, D’Introno A,
  282. Colacicco AM, Frisardi V, et al. (2011).
  283. Metabolic syndrome, mild cognitive impairment,
  284. and progression to dementia. The Italian
  285. Longitudinal Study on Aging. Neurobiology of
  286. aging. 32(11):1932-41.
  287. Komulainen P, Lakka TA, Kivipelto M, Hassinen
  288. M, Helkala E-L, Haapala I, et al. (2007). Metabolic
  289. ابراهیمی و همکاران
  290. syndrome and cognitive function: a populationbased
  291. follow-up study in elderly women. Dementia
  292. and geriatric cognitive disorders. 23(1):29-34.
  293. Yates KF, Sweat V, Yau PL, Turchiano MM,
  294. Convit A. (2012). Impact of metabolic syndrome
  295. on cognition and brain a selected review of the
  296. literature. Arteriosclerosis, thrombosis, and
  297. vascular biology. 32(9):2060-7.
  298. Cassilhas RC, Viana VA, Grassmann V, Santos
  299. RT, Santos RF, Tufik S, et al. (2007). The impact
  300. of resistance exercise on the cognitive function
  301. of the elderly. Medicine and science in sports
  302. and exercise. 39(8):1401.
  303. Tsutsumi T, Don BM, Zaichkowsky LD,
  304. Delizonna LL. (1997). Physical fitness and
  305. psychological benefits of strength training in
  306. community dwelling older adults. Applied
  307. human science. 16(6):257-66.
  308. Kramer AF, Erickson KI. (2007). Capitalizing on
  309. cortical plasticity: influence of physical activity
  310. on cognition and brain function. Trends in
  311. cognitive sciences. 11(8):342-8.
  312. Cotman CW, Berchtold NC. (2002). Exercise: a
  313. behavioral intervention to enhance brain health
  314. and plasticity. Trends in neurosciences. 25(6):
  315. -301.
  • تاریخ دریافت: 23 شهریور 1395
  • تاریخ بازنگری: 22 خرداد 1403
  • تاریخ پذیرش: 11 دی 1399
  • تاریخ اولین انتشار: 11 دی 1399
  • تاریخ انتشار: 01 خرداد 1395