تاثیر تمرین تناوبی شدید و تمرین تداومی بر عملکرد سلولهای بنیادی و ظرفیت خود نوزایی سلول های میوکاردموش های صحرایی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران

2 موسسه تحقیقاتی هیستوژنوتک پاسارگاد، تهران، ایران

چکیده

هدف: نشان داده شده که فعالیت ورزشی در بیشتر گونه های جانوری به افزایش و بهبود شاخص­های عملکردی قلبی منجر می شود. به نظر می­رسد که به دنبال انواع فعالیت ورزشی ظرفیت خود نوزایی قلبی از طریق افزایش تشکیل کاردیومیوسیت­های جدید افزایش می­یابد. مطالعه حاضر تاثیر تمرینات تناوبی شدید و تداومی بر عملکرد سلول های بنیادی و ظرفیت خود نوزایی قلبی را بررسی می­کند.روش شناسی: 24 عدد رت ویستار نر بالغ به سه گروه تمرین تناوبی شدید ،تداومی و کنترل تقسیم شدند. پروتکل های تمرینی 5 روز در هفته و 6 هفته اجرا شد. بافت قلب استخراج و مقادیر c-Kit و  Ki67 به روش ایمونوهیستوشیمی و بیان ژن  Nkx2.5به روش RealTime-PCR آنالیز شد. روش اماری تحلیل واریانس یک طرفه با معناداری  )05/0(P≤ استفاده شد. نتایج: افزایش معنادار سلول­های مثبت c-Kit در گروه تمرین HIIT )00/0(P≤ و در گروه تداومی )0۱۸/0(P≤  مشاهده شد که این افزایش در گروه HIIT بیشتر بود. افزایش معنادار سلول های مثبتKi67  در گروه تمرین HIIT )00/0(P≤ و گروه تداومی )05/0(P≤ مشاهده شد که این افزایش در گروهHIIT  بیشتر بود. همچنین افزایش معنادار بیان ژن  Nkx2.5در گروه تمرین HIIT )015/0(P≤و در گروه تداومی )03/0(P≤ مشاهده شد که این افزایش در گروه تداومی بیشتر بود. بحث و نتیجه گیری:به نظر می رسدتمرینات ورزشی از طریق افزایش تکثیر سلول­های بنیادی در قلب بازسازی قلب را آغاز کرده و متعاقب آن تمایزc-Kit را فعال و بیان ژن Nkx2.55 را که دو عامل اصلی رونویسی اولیه دودمان قلب هستند افزایش می­دهد؛ که موجب تولید سلولهای جدید قلب می­شود. 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of high intensity interval and continues training on cardiac stem cells function and myocardial regeneration capacity in male rats

نویسندگان [English]

  • AREZOO ESKANDARI SHAHRABI 1
  • rahman sori 1
  • siroos chobineh 1
  • zohre mazaheri tirani 2
1 Faculty of Physical Education and sport science, Tehran University, Tehran, Iran
2 Histogenotac institute, Tehran, Iran
چکیده [English]

Purpose: Adult cardiac stem cells have ability to regenerate and repair cardiac cells through proper stimulation. Cardiac regeneration capacity decreases with ageing, while physical activities play a positive role in this case. The aim of this study was the effect of high intensity interval and continues training on cardiac stem cells function and myocardial regeneration capacity in male rats.
Methods: Twenty-four Vistar male rats (365.6±13.3 g, 6-8 month) were divided into three groups HIIT (high intensity) continuous and control. The training protocol was performed 5 sessions per week for 6 weeks. The heart rats were extracted and c-Kit and Ki67 values were analyzed by Immunohistochemistry and Nkx2.5 gene expression for cardiac stem cells was measured by Real Time-PCR. The data were analyzed by one-way ANOVA (P≤0.05).
Results: According to the results of this study, there was a significant increase in c-Kit cells in the HIIT (P=0.001) and in the continuous group (P=0.018) and Significant increase in positive Ki67 cells in the HIIT group (P=0.001) and continuous group (P=0.05). This increase was greater in the HIIT group. As well as a significant increase was observed in the Nkx2.5 gene expression in the HIIT training group (P=0.015) and in the continuous group (P=0.03) which increased in the continuous group was grater.
Conclusion: The results showed that the intensity of training is more effective for cardiac regeneration adaptation and HIIT have more positive effects on differentiation of cardiac stem cells.

کلیدواژه‌ها [English]

  • HIIT Training
  • continuous Training
  • Cardiac Stem Cells
  • c
  • Kit
  • Nkx2.5
1. Bergmann O, Bhardwaj RD, Bernard S,
Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence
for cardiomyocyte renewal in humans.
Science. 2009;324(5923):98-102.
2. Kajstura J, Rota M, Cappetta D, Ogórek B,
Arranto C, Bai Y, et al. Cardiomyogenesis in
the aging and failing human heart. Circulation.
2012:. 112.118380.
3. Weissman IL. Stem cells: units of development,
units of regeneration, and units in evolution.
cell. 2000;100(1):157-68.
4. Bergmann O, Jovinge S. Cardiac regeneration
in vivo: mending the heart from within? Stem cell research. 2014;13(3):523-31.
5. Smart N, Bollini S, Dubé KN, Vieira JM, Zhou
B, Davidson S, et al. De novo cardiomyocytes
from within the activated adult heart after injury.
Nature. 2011;474(7353):640-44.
6. Vincent SD, Buckingham ME. Chapter One-
How to Make a Heart: The Origin and Regulation
of Cardiac Progenitor Cells. Current topics
in developmental biology. 2010;90:1-41.
7. Torella D, Ellison G, Karakikes I, Nadal-Ginard
B. Resident cardiac stem cells. Cell Mol
Life Sci. 2007;64(6):661-73.
8. Chong JJ, Chandrakanthan V, Xaymardan M,
Asli NS, Li J, Ahmed I, et al. Adult cardiac-resident
MSC-like stem cells with a proepicardial
origin. Cell stem cell. 2011;9(6):527-40.
9. Ellison GM, Vicinanza C, Smith AJ, Aquila I,
Leone A, Waring CD, et al. Adult c-kit pos cardiac
stem cells are necessary and sufficient
for functional cardiac regeneration and repair.
Cell. 2013;154(4):827-42.
10.Waring CD, Vicinanza C, Papalamprou A,
Smith AJ, Purushothaman S, Goldspink DF,
et al. The adult heart responds to increased
workload with physiologic hypertrophy,
cardiac stem cell activation, and new myocyte
formation. European heart journal.
2012;35(39):2722-31.
11. Beltrami AP, Barlucchi L, Torella D, Baker M,
Limana F, Chimenti S, et al. Adult cardiac stem
cells are multipotent and support myocardial
regeneration. Cell. 2003;114(6):763-76.
12. Takeuchi JK, Bruneau BG. Directed
transdifferentiation of mouse mesoderm
to heart tissue by defined factors. Nature.
2009;459(7247):708-11.
13. Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang
GN, et al. Heart repair by reprogramming
non-myocytes with cardiac transcription factors.
Nature. 2012;485(7400):599-604.
14. Stennard FA, Costa MW, Elliott DA, Rankin
S, Haast SJ, Lai D, et al. Cardiac T-box factor
Tbx20 directly interacts with Nkx2-5, GATA4,
and GATA5 in regulation of gene expression in
the developing heart. Developmental biology.
2003;262(2):206-24.
15. Chen G-C, Ruan Z-B, Yin Y-G, Zhu L. The
mechanism underlying the differentiation
of human umbilical cord-derived mesenchymal
stem cells into myocardial cells induced
by 5-azacytidine. Indian journal of medical
sciences. 2010;64(9):402.
16. Ruan Z, Zhu L, Yin Y, Chen G. Overexpressing
NKx2. 5 increases the differentiation of human
umbilical cord drived mesenchymal stem
cells into cardiomyocyte-like cells. Biomedicine
& Pharmacotherapy. 2016;78:110-15.
17. Boström P, Mann N, Wu J, Quintero PA,
Plovie ER, Panáková D, et al. C/EBPβ controls
exercise-induced cardiac growth and protects
against pathological cardiac remodeling. Cell.
2010;143(7):1072-83.
18. Waring CD, Vicinanza C, Papalamprou
A, Smith AJ, Purushothaman S, Goldspink
DF, et al. The adult heart responds to increased
workload with physiologic hypertrophy,
cardiac stem cell activation, and new
myocyte formation. European heart journal. 2012;35(39):2722-31.
19. Xiao J, Xu T, Li J, Lv D, Chen P, Zhou Q, et
al. Exercise-induced physiological hypertrophy
initiates activation of cardiac progenitor cells.
International journal of clinical and experimental
pathology. 2014;7(2):663.
20. Ellison GM, Galuppo V, Vicinanza C, Aquila
I, Waring CD, Leone A, et al. Cardiac stem and
progenitor cell identification: different markers
for the same cell. Front Biosci (Schol Ed).
2010;2:641-52.
21. Ellison GM, Waring CD, Vicinanza C,
Torella D. Physiological cardiac remodelling
in response to endurance exercise training:
cellular and molecular mechanisms. Heart.
2011;98(1):5-10.
22. Thomas C, Bishop D, Moore-Morris T, Mercier
J. Effects of high-intensity training on MCT1,
MCT4, and NBC expressions in rat skeletal
muscles: influence of chronic metabolic alkalosis.
American Journal of Physiology-Endocrinology
and Metabolism. 2007;293(4):916-22.
23. Leri A, Kajstura J, Anversa P. Cardiac stem
cells and mechanisms of myocardial regeneration.
Physiological reviews. 2005;85(4):1373-
416.
24. Gage FH. Mammalian neural stem cells.
Science. 2000;287(5457):1433-38.
25.Leite CF, Lopes CS, Alves AC, Fuzaro CSC,
Silva MV, de Oliveira LF, et al. Endogenous
resident c-Kit cardiac stem cells increase in
mice with an exercise-induced, physiologically
hypertrophied heart. Stem cell research.
2015;15(1):151-64.
26. Waring CD, Henning BJ, Smith AJ, Nadal‐
Ginard B, Torella D, Ellison GM. Cardiac
adaptations from 4 weeks of intensity‐controlled
vigorous exercise are lost after a similar
period of detraining. Physiological reports.
2015;3(2):e12302.
27. Ellison G, Mendicino I, Sacco W, Purushothaman
C, Indolfi C, Goldspink D, et al. Exercise-
induced cardiac stem cell activation and
ensuing myocyte hyperplasia contribute to left
ventricular remodelling. Proceedings of The
Physiological Society–Heart and Cardiac Muscle
Abstracts. 2008;11: 17.
28. Thijssen DH, Vos JB, Verseyden C, Van Zonneveld
AJ, Smits P, Sweep FC, et al. Haematopoietic
stem cells and endothelial progenitor
cells in healthy men: effect of aging and training.
Aging cell. 2006;5(6):495-503.
29. Park J-H, Miyashita M, Kwon Y-C, Park H-T,
Kim E-H, Park J-K, et al. A 12-week after-school
physical activity programme improves endothelial
cell function in overweight and obese
children: a randomised controlled study. BMC
pediatrics. 2012;12(1):111.
30. Walther C, Gaede L, Adams V, Gelbrich
G, Leichtle A, Erbs S, et al. Effect of increased
exercise in school children on physical fitness
and endothelial progenitor cells. Circulation.
2009;120(22):2251-59.