[1] Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of cachexia, sarcopenia and muscle. 2012;3(3):163-79.
[2] Verhees KJ, Schols AM, Kelders MC, Op den Kamp CM, van der Velden JL, Langen RC. Glycogen synthase kinase- 3β is required for the induction of skeletal muscle atrophy. American Journal of Physiology-Cell Physiology. 2011;301(5):C995-C1007.
[3] Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional /pretranslational mechanisms. Front Physiology. 2013 11;4:284.
[4] Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard J-C, Sassi AH, et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cellular and molecular life sciences. 2014;71(22):4361-71.
[5] Adams GR, Caiozzo VJ, Baldwin KM. Skeletal muscle unweighting: spaceflight and ground-based models. Journal of applied physiology. 2003;95(6):2185-201.
[6] Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. Journal of applied physiology. 2000;89(2):823-39.
[7] Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW. Control of the size of the human muscle mass. Annu Rev Physiol. 2004;66:799-828.
[8] Chopard A, Hillock S, Jasmin BJ. Molecular events and signalling pathways involved in skeletal muscle disuseāinduced atrophy and the impact of countermeasures. Journal of cellular and molecular medicine. 2009;13(9b):3032-50.
[9] Bialek P, Morris C, Parkington J, St. Andre M, Owens J, Yaworsky P, et al. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy. Physiological genomics. 2011;43(19):1075-86.
[10] Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. The Journal of cell biology. 2010;191(7):1395-411.
[11] Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA. Skeletal muscle proteolysis in response to shortterm unloading in humans. Journal of applied physiology. 2008;105(3):902-6.
[12] Gustafsson T, Osterlund T, Flanagan JN, von Walden F, Trappe TA, Linnehan RM, et al. Effects of 3 days unloading on molecular regulators of muscle size in humans. Journal of applied physiology. 2010;109(3):721-7.
[13] Sun H, Gong Y, Qiu J, Chen Y, Ding F, Zhao Q. TRAF6 inhibition rescues dexamethasone-induced muscle atrophy. International journal of molecular sciences. 2014;15(6):11126-41.
[14] Glass DJ. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nature cell biology.
2003;5(2):87.
[15] Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. Journal of applied physiology. 2002;92(4):1367-77.
[16] Al-Nassan S, Fujita N, Kondo H, Murakami S, Fujino H. Chronic exercise training down-regulates TNF-α and atrogin-1/MAFbx in mouse gastrocnemius muscle atrophy induced by hindlimb unloading. Acta histochemica et cytochemica. 2012;45(6):343-9.
[17] Labeit S, Kohl CH, Witt CC, Labeit D, Jung J, Granzier H. Modulation of muscle atrophy, fatigue and MLC phosphorylation
by MuRF1 as indicated by hindlimb suspension studies on MuRF1-KO mice. BioMed Research International.
2010;2010.
[18] Polge C, Koulmann N, Claustre A, Jarzaguet M, Serrurier B, Combaret L, et al. UBE2D2 is not involved in MuRF1-dependent muscle wasting during hindlimb suspension. The international journal of biochemistry & cell biology. 2016;79:488-93.
[19] Thoma A, Lightfoot AP. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv Exp Med Biol. 2018;1088:267-279.
[20] Cornwell EW, Mirbod A, Wu CL, Kandarian SC, Jackman RW. C26 cancer-induced muscle wasting is IKKβ-dependent and NF-kappaB-independent. PLoS One. 2014; 29;9(1):e87776.
[21] Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. American Journal of Physiology-Cell Physiology. 2016;311(3):C392-C403.
[22] Sato S, Ogura Y, Kumar A. TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction Front Immunol. 2014 Jan 27;5:18.
[23] Tajrishi MM, Zheng TS, Burkly LC, Kumar A. The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev. 2014 Apr;25(2):215-25.
[24] Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development,
function, and homeostasis of the immune system. Immunol Rev. 2015;266(1):72-92.
[25] Umasuthan N, Bathige SD, Revathy KS, Nam BH, Choi CY, Lee J. Molecular genomic- and transcriptional-aspects of a teleost TRAF6 homolog: Possible nvolvement in immune responses of Oplegnathus fasciatus against pathogens. Fish Shellfish Immunol. 2015;42(1):66-78.