Purpose: SIRT3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. The aim of this study was to investigate the effect of eight-week aerobic continuous and high intensity interval training on levels of SIRT3 in Wistar rat’s skeletal muscle tissue. Methods: 24 Wistar rats were randomly divided into four groups of six animals each, namely: 1) Obese- High-intensity interval training (HIIT), 2) Obese- Continues training (CT) 3) Obese control (OB) and 4) Non-Obese control (Cont.). During the study, groups of rat 1, 2 and 3 were given a high-fat diet. After familiarization, CT and HIIT rats performed aerobic continuous training and high intensity interval training three times a week for eight weeks, respectively. 48 hours after the last training session, the rats were sacrificed. Results: Western blot analysis showed that the amount of SIRT3 protein of Soleus muscle in HIIT and CT groups was higher than OB and Cont. groups significantly (p< 0.05). Also, SIRT3 content was higher in HIIT than CT group, though insignificant. Also, no significant difference was observed between SIRT3 content of OB and Cont. However, SIRT3 content was lower in OB group. Conclusion: It seems that using HIIT exercise can be as effective as continuous training on muscle mitochondrial function and ultimately contribute to longevity, especially in obese patients and raises important factors such as SIRT3.
Trillou CR, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand J-P, et al. (2003). Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.284 (2): R345-R53.
Peppard PE, Young T, Palta M, Skatrud J. (2000). Prospective study of the association between sleep-disordered breathing and hypertension. New England Journal of Medicine.342 (19): 1378-84.
Formiguera X, Canton A. (2004). Obesity: epidemiology and clinical aspects. Best practice & research Clinical gastroenterology.18 (6): 1125-46.
Anandacoomarasamy A, Fransen M, March L. (2009). Obesity and the musculoskeletal system. Current opinion in rheumatology.21 (1): 71-7.
Strandberg TE, Stenholm S, Strandberg AY, Salomaa VV, Pitkälä KH, Tilvis RS. (2013). The âobesity paradox,â frailty, disability, and mortality in older men: a prospective, longitudinal cohort study. American journal of epidemiology. kwt157.
Haslam D, James W. (2005). Obesity lJ J. Lancet.366 (9492): 1.
Dixon JB. (2010). The effect of obesity on health outcomes. Molecular and cellular endocrinology.316 (2): 104-8.
LANE MA, INGRAM DK, ROTH GS. (1998). 2-Deoxy-D-glucose feeding in rats mimics physiologic effects of calorie restriction. Journal of Anti-Aging Medicine.1 (4): 327-37.
Gan L. (2007). Therapeutic potential of sirtuin-activating compounds in Alzheimerâs disease. Drug News Perspect.20 (4): 233-9.
10. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward Jr, et al. (2009). Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY).1 (9): 771-83.
Haigis MC, Guarente LP. (2006). Mammalian sirtuinsâemerging roles in physiology, aging, and calorie restriction. Genes & evelopment.20 (21): 2913-21.
Michan S, Sinclair D. (2007). Sirtuins in mammals: insights into their biological function. Biochemical Journal.404 (1): 1-13.
Dali- Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. (2007). Sirtuins: the âmagnificent sevenâ, function, metabolism and longevity. Annals of medicine.39 (5): 335-45.
Haigis MC, Sinclair DA. (2010). Mammalian sirtuins: biological insights and disease relevance. Annual review of pathology.5: 253.
ombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Histone Deacetylases: the Biology and Clinical Implication: Springer; 2011. p. 163-88.
Toiber D, Sebastian C, Mostoslavsky R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Histone Deacetylases: the Biology and Clinical Implication: Springer; 2011. p. 189-224.
Zhong L, Mostoslavsky R. (2011). Fine tuning our cellular factories: sirtuins in mitochondrial biology. Cell metabolism.13 (6): 621-6.
Guarente L. (2008). Mitochondriaâa nexus for aging, calorie restriction, and sirtuins? Cell.132 (2): 171-6.
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular biology of the cell.16 (10): 4623-35.
North BJ, Verdin E. (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol.5 (5): 224.
Hallows WC, Albaugh BN, Denu JM. (2008). Where in the cell is SIRT3?âfunctional localization of an NAD+-dependent protein deacetylase. Biochemical Journal.411 (2): e11-e3.
Cooper HM, Spelbrink JN. (2008). The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochemical Journal.411 (2): 279-85.
Shi T, Wang F, Stieren E, Tong Q. (2005). SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. Journal of Biological Chemistry.280 (14): 13560-7.
Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. (2002). SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proceedings of the National Academy of Sciences.99 (21): 13653-8.
Schwer B, North BJ, Frye RA, Ott M, Verdin E. (2002). The human silent information regulator (Sir) 2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotideâdependent deacetylase. The Journal of cell biology.158 (4): 647-57.
Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. (2007). Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and cellular biology.27 (24): 8807-14.
Bellizzi D, Dato S, Cavalcante P, Covello G, Di Cianni F, Passarino G, et al. (2007). Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics.89 (1): 143-50.
Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. (2005). A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics.85 (2): 258-63.
Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne A, George W, et al. (2006). Altered sirtuin expression is associated with node-positive breast cancer. British journal of cancer.95 (8): 1056-61.
Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell.130 (6): 1095-107.
White AT, Schenk S. (2012). NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. American Journal of Physiology-Endocrinology and Metabolism.303 (3): E308-E21.
Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, et al. (2008). Endurance exercise as a countermeasure for aging. Diabetes.57 (11): 2933-42.
Gurd BJ, Holloway GP, Yoshida Y, Bonen A. (2012). In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinaseâindependent manner. Metabolism.61 (5): 733-41.
Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K, Kawanaka K. (2010). Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. Journal of applied physiology.109 (2): 332-40.
Bua EA, McKiernan SH, Wanagat J, McKenzie D, Aiken JM. (2002). Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. Journal of applied physiology.92 (6): 2617-24.
Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. (2008). Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging cell.7 (1): 2-12.
Dirks AJ, Leeuwenburgh C. (2004). Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radical Biology and Medicine.36 (1): 27-39.
Martin C, Dubouchaud H, Mosoni L, Chardigny JM, Oudot A, Fontaine E, et al. (2007). Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius. Aging cell.6 (2): 165-77.
WANAGAT J, CAO Z, PATHARE P, AIKEN JM. (2001). Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. The FASEB Journal.15 (2): 322-32.
Egan B, Zierath JR. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism.17 (2): 162-84.
Adams GR, Hather BM, Baldwin KM, Dudley GA. (1993). Skeletal muscle myosin heavy chain composition and resistance training. Journal of Applied Physiology.74 (2): 911-5.
(2015). Effect of eight-week aerobic continuous and high intensity interval training on levels of SIRT3 in skeletal muscle tissue of Wistar rats. Journal of Sport and Exercise Physiology, 8(2), 1277-1289. doi: 10.48308/joeppa.2015.98771
MLA
. "Effect of eight-week aerobic continuous and high intensity interval training on levels of SIRT3 in skeletal muscle tissue of Wistar rats", Journal of Sport and Exercise Physiology, 8, 2, 2015, 1277-1289. doi: 10.48308/joeppa.2015.98771
HARVARD
(2015). 'Effect of eight-week aerobic continuous and high intensity interval training on levels of SIRT3 in skeletal muscle tissue of Wistar rats', Journal of Sport and Exercise Physiology, 8(2), pp. 1277-1289. doi: 10.48308/joeppa.2015.98771
CHICAGO
, "Effect of eight-week aerobic continuous and high intensity interval training on levels of SIRT3 in skeletal muscle tissue of Wistar rats," Journal of Sport and Exercise Physiology, 8 2 (2015): 1277-1289, doi: 10.48308/joeppa.2015.98771
VANCOUVER
Effect of eight-week aerobic continuous and high intensity interval training on levels of SIRT3 in skeletal muscle tissue of Wistar rats. Journal of Sport and Exercise Physiology, 2015; 8(2): 1277-1289. doi: 10.48308/joeppa.2015.98771