تغییرات آسپروسین، اسپکسین و لپتین متعاقب تمرینات مقاومتی دایره‌ای با شدت‌های بالا و متوسط در مردان مبتلا به دیابت نوع دو

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه صنعتی قم، قم، ایران.

چکیده

زمینه و هدف: بافت چربی به‌عنوان منبعی برای آزادسازی آدیپوکاین‌ها، از جمله آسپروسین، اسپکسین و لپتین، در تنظیم سوخت‌وساز گلوکز و تعامل با انسولین نقش دارد. در دیابت نوع دو، اختلال در مقادیر این هورمون‌ها بر حساسیت انسولینی و سوخت‌وساز گلوکز تأثیر می‌گذارد. تمرینات ورزشی منظم به‌عنوان روشی مؤثر در پیشگیری و درمان غیردارویی دیابت نوع دو مطرح است. هدف این تحقیق بررسی پاسخ آسپروسین، اسپکسین و لپتین به هشت هفته تمرینات مقاومتی دایره‌ای با شدت‌های متوسط و بالا در مردان مبتلا به دیابت نوع دو بود.
مواد و روش‌ها: در این پژوهش نیمه‌تجربی با طرح پیش‌آزمون-پس‌آزمون، 36 مرد مبتلا به دیابت نوع دو (میانگین سنی 6/3 ± 3/40 سال) به‌طور تصادفی به سه گروه کنترل، تمرین مقاومتی دایره‌ای با شدت متوسط (MICT) و تمرین مقاومتی دایره‌ای با شدت بالا (HICT) تقسیم شدند. گروه‌های تمرین یک پروتکل تمرین مقاومتی دایره‌ای را به مدت هشت هفته و سه جلسه در هفته انجام دادند. در گروه MICT، حرکات در سه ست 13 تکراری و با 60 درصد یک تکرار بیشینه و در گروه HICT در سه ست 10 تکراری با 80% یک تکرار بیشینه انجام شد. خون‌گیری پیش و پس از مداخله انجام و مقادیر سرمی آسپروسین، اسپکسین و لپتین به روش الایزا ارزیابی شد. همچنین شاخص HOMA-IR برای ارزیابی حساسیت انسولینی محاسبه شد. برای تحلیل داده‌ها از t همبسته و تحلیل واریانس یکطرفه همراه با آزمون تعقیبی توکی استفاده شد و سطح معناداری 05/0>P در نظر گرفته شد.
نتایج:  یافته‌ها نشان داد که هشت هفته تمرینات مقاومتی دایره‌ای با شدت متوسط و بالا به‌طور معناداری وزن بدن (0001/0=P)، آسپروسین (0001/0=P) و لپتین (0001/0=P) را کاهش داد. همچنین سطوح سرمی اسپکسین به‌طور معناداری افزایش یافت (0001/0=P). تمرینات با شدت بالا در همه متغیرهای مورد مطالعه تأثیر بیشتری داشتند و شاخص مقاومت انسولینی نیز کاهش معناداری را نشان داد (0001/0=P).
نتیجه‌گیری: این تحقیق نشان داد که هشت هفته تمرینات مقاومتی دایره‌ای با شدت‌های بالا و متوسط به تغییرات مثبت در سطوح آدیپوکاین‌هایی مانند آسپروسین، اسپکسین و لپتین منجر شد که با بهبود مقاومت انسولینی همراه بود. به‌نظر می‌رسد تمرینات با شدت بالا تأثیر بیشتری در این تغییرات داشته باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Changes in Asprosin, spexin, and leptin following circuit resistance training with high and moderate intensities in men with type II diabetes

نویسنده [English]

  • Mohammad Karimi
Qom University of Technology, Qom, Iran
چکیده [English]

Background and Purpose: Adipose tissue serves as a source for the release of adipokines, including Asprosin, Spexin, and Leptin, which play a role in regulating glucose metabolism and interacting with insulin. In type II diabetes, the disruption of these hormones affect insulin sensitivity and glucose metabolism. Regular exercise is considered an effective method for the non-pharmacological prevention and treatment of type II diabetes. The objective of this study was to investigate the responses of asprosin, spexin, and leptin to eight weeks of circuit resistance training with moderate and high intensities in men with type II diabetes.
Materials and Methods: In this semi-experimental study with a pre-test/post-test design, 36 men with type II diabetes (age, 40.3 ± 3.6 years) were randomly divided into three groups: a control group, a moderate-intensity circuit resistance training group (MICT), and a high-intensity circuit resistance training group (HICT). The training groups followed a circuit resistance training protocol for eight weeks, three sessions per week. In the MICT group, exercises were performed in three sets of 13 repetitions at 60% of one repetition maximum (1RM), while in the HICT group, exercise protocol encompassed three sets of 10 repetitions at 80% of 1RM. Blood samples were taken before and after the intervention to evaluate serum levels of asprosin, spexin, and leptin by using the ELISA technique. Additionally, the HOMA-IR index was calculated to assess insulin resistance. Data analyses were conducted using paired t-tests and one-way ANOVA with Tukey's post hoc test, considering a significance level of p < 0.05.
Results: Data analyses indicated that eight weeks of circuit resistance training at moderate and high intensities significantly reduced body weight (p = 0.0001), asprosin (p = 0.0001), leptin (p = 0.0001) and insulin resistance index (p = 0.0001). Additionally, serum levels of spexin was significantly increased (p = 0.0001). When responses to two exercise protocols were compared, the high-intensity training had a greater impact on all the studied variables.
Conclusion: This study demonstrated that eight weeks of circuit resistance training at high and moderate intensities led to positive changes in the levels of adipokines such as Asprosin, Spexin, and Leptin, which were associated with improved insulin resistance. It appears that high-intensity training had a greater impact than MICT.

کلیدواژه‌ها [English]

  • Circuit training
  • Insulin sensitivity
  • Adipokines
  • Glucose metabolism
  1.  

    1. American College of Sports Medicine and the American Diabetes Association. Exercise and Type 2 Diabetes. Medicine & Science in Sports & Exercise and Diabetes Care. 2010; 10: 2282-2302.
    2. De Sousa GJ, Tittel SR, Häusler M, Holterhus PM, Berger G, Holder M, Kamrath C, Golembowski S, Herrlinger S, Holl RW. Type 1 diabetes and epilepsy in childhood and adolescence: Do glutamic acid decarboxylase autoantibodies play a role? Data from the German/Austrian/Swiss/Luxembourgian DPV Registry. Pediatric Diabetes. 2020; 21: 766-773.
    3. Tesauro M, Mazzotta FA. Pathophysiology of diabetes. In: Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. Academic Press; 2020; 1: 37-47.
    4. Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, Saha PK, Del Solar M, Zhu B, York B, Sarkar P, Rendon DA, Gaber MW, LeMaire SA, Coselli JS, Milewicz DM, Sutton VR, Butte NF, Moore DD, Chopra AR. Asprosin, a fasting-induced glucogenic protein hormone. Cell. 2016; 165(3): 566–579.
    5. Meneguetti BT, Cardoso MH, Ribeiro CFA, Felício MR, Pinto IB, Santos NC, Carvalho CME, Franco OL. Neuropeptide receptors as potential pharmacological targets for obesity. Pharmacology & Therapeutics. 2019; 196: 59-78.
    6. Zhang L, Chen C, Zhou N, Fu Y, Cheng X. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clinica Chimica Acta. 2019; 489: 183-188.
    7. Ceylan Hİ, Saygın Ö, Özel Türkcü Ü. Assessment of acute aerobic exercise in the morning versus evening on asprosin, spexin, lipocalin-2, and insulin level in overweight/obese versus normal weight adult men. Chronobiology International. 2020; 37(8): 1252-1268.
    8. Behrooz M, Vaghef-Mehrabany E, Maleki V, Pourmoradian S, Fathifar Z, Ostadrahimi A. Spexin status in relation to obesity and its related comorbidities: a systematic review. Journal of Diabetes & Metabolic Disorders. 2020; 19(2): 1943–1957.
    9. Karaca A, Bakar-Ates F, Ersoz-Gulcelik N. Decreased spexin levels in patients with type 1 and type 2 diabetes. Medical Principles and Practice. 2018; 27(6): 549–554.
    10. Gu L, Ma Y, Gu M, Zhang Y, Yan S, Li N, Wang Y, Ding X, Yin J, Fan N, Peng Y. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes. Peptides. 2015; 71: 232–239.
    11. Gu L, Ding X, Wang Y, Gu M, Zhang J, Yan S, Li N, Song Z, Yin J, Lu L, Peng Y. Spexin alleviates insulin resistance and inhibits hepatic gluconeogenesis via the FoxO1/PGC-1α pathway in high-fat-diet-induced rats and insulin-resistant cells. International Journal of Biological Sciences. 2019; 15(13): 2815–2829.
    12. Khadir A, Kavalakatt S, Madhu D, Devarajan S, Abubaker J, Al-Mulla F, Tiss A. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Scientific Reports. 2020; 10(1): 10635.
    13. Racil G, Coquart JB, Elmontassar W, Haddad M, Goebel R, Chaouachi A, Amri M, Chamari K. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biology of Sport. 2016; 33(2): 145-152.
    14. Hoseinrezaie M, Abbaspour M, Khoramipour K. The effect of exercise on appetite hormones in obesity and diabetes with an emphasis on the role of leptin in adipose tissue and hypothalamus cross talk: A systematic review study. Sport Physiology. 2022; 14(54): 47-80. [In Persian].
    15. Khoramipour K, Gaeini A, Gilany K. Metabolomics application in exercise metabolism research: a review study. Iranian Journal of Endocrinology and Metabolism. 2019; 21(2): 102-116. [In Persian].
    16. Kon M, Ebi Y, Nakagaki K. Effects of a single bout of high-intensity interval exercise on C1q/TNF-related proteins. Applied Physiology, Nutrition, and Metabolism. 2019; 44(1): 47-51.
    17. Saremi A, Asghari M, Ghorbani A. Effects of aerobic training on serum omentin-1 and cardiometabolic risk factors in overweight and obese men. Journal of Sports Science. 2010; 28(9): 993-998. [In Persian].
    18. Faramarzi M, Banitalebi E, Nori S, Farzin S, Taghavian Z. Effects of rhythmic aerobic exercise plus core stability training on serum omentin, chemerin and vaspin levels and insulin resistance of overweight women. Journal of Sports Medicine and Physical Fitness. 2016; 56(4): 476-482.
    19. Schroeder EC, Franke WD, Sharp RL, Lee DC. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS ONE. 2019; 14: e0210292.
    20. Yumuk V, Tsigos C, Fried M, Schindler K, Busetto L, Micic D, Toplak H. European Guidelines for Obesity Management in Adults. Obesity Facts. 2015; 8: 402–424.
    21. Tate DF, Jeffery RW, Sherwood NE, Wing RR. Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? American Journal of Clinical Nutrition. 2007; 85: 954–959.
    22. Štajer V, Milovanović IM, Todorović N, Ranisavljev M, Pišot S, Drid P. Let’s (Tik) Talk About Fitness Trends. Frontiers in Public Health. 2022; 10: 899949.
    23. Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, Van Pelt DW, Pitchford LM, Chenevert TL, Gioscia-Ryan RA, et al. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. Journal of Clinical Endocrinology and Metabolism. 2020; 105: e2941–e2959.
    24. Emamdoost S, Abbassi Daloii A, Barari A, Saeidi A. The effect of different intensity circuit resistance training on inflammatory and anti-inflammatory markers in obese men. Tehran University of Medical Journal. 2020; 78(9): 598-605. [In Persian].
    25. Guler A, Demir I. Decreased levels of spexin are associated with hormonal and metabolic disturbance in subjects with polycystic ovary syndrome. Journal of Obstetrics and Gynaecology. 2021; 41(3): 408–413.
    26. Tejaswi G, Dayanand CD, Prabhakar K. Insulin resistance and decreased spexin in Indian patients with type 2 diabetes mellitus. Bioinformation. 2021; 17(9): 790–797.
    27. Kumar S, Hossain MJ, Javed A, Kullo IJ, Balagopal PB. Relationship of circulating spexin with markers of cardiovascular disease: a pilot study in adolescents with obesity. Pediatric Obesity. 2018; 13(6): 374–380.
    28. Kolodziejski PA, Leciejewska N, Chmurzynska A, Sassek M, Szczepankiewicz A, Szczepankiewicz D, Malek E, Strowski MZ, Checinska-Maciejewska Z, Nowak KW, Pruszynska-Oszmalek E. 30-Day spexin treatment of mice with diet-induced obesity (DIO) and type 2 diabetes (T2DM) increases insulin sensitivity, improves liver functions and metabolic status. Molecular and Cellular Endocrinology. 2021; 536: 111420.
    29. Walewski JL, Ge F, Lobdell HT, Levin N, Schwartz GJ, Vasselli JR, Pomp A, Dakin G, Berk PD. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity (Silver Spring). 2014; 22(7): 1643-1652.
    30. Paz-Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian Journal of Endocrinology & Metabolism. 2012; 16: S549-555.
    31. Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocrine Reviews. 2021; 42: 1-28.
    32. Torabi M, Mirzaei B. The effects of high-intensity interval and moderate-intensity aerobic continuous training on some of the glycemic control variables and fetuin-A in type 2 diabetic patients. Journal of Sport and Exercise Physiology. 2022; 15(3): 81-90. [In Persian].
    33. Duerrschmid C, He Y, Wang C, Li C, Bournat JC, Romere C, et al. Asprosin is a centrally acting orexigenic hormone. Nature Medicine. 2017; 23: 1444–1453.
    34. Azimidokht SMA, Mogharnasi M, Kargar Shouroki MK, Zarezade Mehrizi AA. The Effect of 8 Weeks Interval Training on Insulin Resistance and Lipid Profiles in Type 2 Diabetic Men Treated with Metformin. Journal of Sport Biosciences. 2015; 7(3): 461-476. [In Persian].

    35. Dashti N, Rezaeian N, Karimi M, Kooroshfard N. The Effect of high-intensity interval training on serum levels of Osteopontin and insulin resistance index in sedentary overweight and obese women. Journal of Sport and Exercise Physiology. 2021; 14(2): 

  • تاریخ دریافت: 15 شهریور 1403
  • تاریخ بازنگری: 03 آبان 1403
  • تاریخ پذیرش: 04 آذر 1403
  • تاریخ اولین انتشار: 07 آذر 1403
  • تاریخ انتشار: 01 اسفند 1403