اثرات تمرین تناوبی با شدت بالا بر محتوای پروتئین‌های میتوفاژی در بافت چربی احشایی موش‌های دیابتی نوع دو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده علوم انسانی و اجتماعی، دانشگاه کردستان، سنندج، ایران

2 گروه حرکت شناسی و مدیریت ورزشی، دانشگاه A&M، تگزاس، آمریکا

چکیده

زمینه و هدف: دیابت نوع دو اختلال سوخت‌وسازی شایعی است که با افزایش سطح گلوکزخون و اختلال در عملکرد میتوکندری همراه است. کاهش کارایی میتوکندری‌ها در این بیماری موجب کاهش فرایند میتوفاژی می‌شود که خود به پیشرفت عوارض دیابت از جمله مقاومت به انسولین و اختلالات سوخت‌وسازی کمک می‌کند. میتوفاژی، که فرایند تجزیه و بازیافت میتوکندری‌های آسیب‌دیده را شامل می‌شود، برای حفظ سلامت سلولی ضروری است. پروتئین‌های Parkin، کیناز 1 ناشی از PTEN (PINK-1) و اپتینورین (OPTN) از جمله مهم‌ترین نشانگرهای این فرایند هستند. بنابراین، یافتن راهکارهایی برای تقویت میتوفاژی در دیابت نوع دو می‌تواند به بهبود عملکرد میتوکندری و کاهش عوارض این بیماری کمک کند. یکی از این راهکارها، تمرین ورزشی است که تأثیرات مثبتی بر سلامت سوخت‌وسازی و عملکرد میتوکندری دارد. هدف از این تحقیق بررسی اثر یک دوره تمرین تناوبی با شدت بالا (HIIT) بر محتوای پروتئین‌های میتوفاژی شامل Parkin، PINK-1 و OPTN در بافت چربی احشایی موش‌های صحرایی القاشده به دیابت نوع دو بود.
مواد و روش‌ها: در این تحقیق تجربی، 24 سر موش صحرایی نر به سه گروه تقسیم شدند: کنترل سالم (HC)، کنترل دیابتی (DC) و دیابتی + تمرین HIIT (D+HIIT) از طریق تزریق استرپتوزوتوسین (STZ) همراه با رژیم غذایی پرچرب در موش‌های صحرایی القا شد. گروه تمرینی به مدت هشت هفته تحت تمرین تناوبی با شدت بالا (HIIT) قرار گرفتند. شدت تمرین HIIT بین 85-90 درصد بیشینة سرعت دویدن موش‌های صحرایی بود، درحالی‌که تناوب استراحتی با شدت کم (50-60 درصد) انجام می‌شد. در پایان دورة تمرین HIIT، بافت چربی احشایی از هر گروه استخراج شده و محتوای پروتئین‌های میتوفاژی شامل Parkin، PINK-1 و OPTN با استفاده از روش وسترن بلات اندازه‌گیری شد.
نتایج: یافته‌ها نشان داد که دیابت نوع دو به کاهش معنادار سطوح پروتئین‌های PARKIN (33 درصد)، PINK-1 (41 درصد) و OPTN (46 درصد) در گروه DC نسبت به گروه HC منجر شد (001/0>P). با این همه، در گروه D+HIIT، تمرین HIIT موجب افزایش معنادار این پروتئین‌ها نسبت به گروه DC شد، به‌گونه‌ای که سطوح Parkin، PINK-1 و OPTN به‌ترتیب 91/117، 39/103 و 36/536 درصد افزایش یافت (001/0>P). افزون بر این، تمرینHIIT در گروه D+HIIT به کاهش معنادار سطح گلوکز ناشتا و شاخص HOMA-IR منجر شد (001/0>P).
نتیجه‌گیری: بر پایة یافته‌های این پژوهش، تمرین HIIT تأثیرات زیادی بر بازسازی پروتئین‌های میتوفاژی و بهبود شاخص‌های سوخت‌وسازی در بافت چربی احشایی در الگوی حیوانی دیابت نوع دو دارد. این یافته‌ها بر اهمیت تمرین ورزشی، به‌ویژه HIIT، در بهبود عملکرد میتوکندری و افزایش فرایندهای سلولی تأکید می‌کنند. با این همه، با توجه به ماهیت حیوانی این پژوهش، تعمیم نتایج به بیماران مبتلا به دیابت نوع دو نیازمند بررسی‌های بیشتری در پژوهش‌های انسانی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effects of high-intensity interval training on the content of mitophagy proteins in visceral adipose tissue of type 2 diabetic rats

نویسندگان [English]

  • Hadi Golpasandi 1
  • Mohammad Rahman Rahimi 1
  • Shadi Golpasandi 2
  • Mobina Khosravi 1
1 Department of Exercise Physiology, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
2 Department of Kinesiology and Sport Management, Texas A&M University, USA
چکیده [English]

Background and Purpose: Type 2 diabetes is a common metabolic disorder characterized by elevated blood glucose levels and impaired mitochondrial function. Reduced mitochondrial efficiency in this disease leads to a decline in the mitophagy process, which in turn contributes to the progression of diabetes complications, including insulin resistance and metabolic disorders. Mitophagy, which involves the degradation and recycling of damaged mitochondria, is essential for maintaining cellular health. Parkin, PTEN-induced kinase 1 (PINK-1), and Optineurin (OPTN) are among the key markers of this process. Therefore, identifying strategies to enhance mitophagy in type 2 diabetes may help improve mitochondrial function and mitigate disease complications. One such strategy is exercise, which has been shown to have positive effects on metabolic health and mitochondrial function. This study aimed to investigate the effect of a high-intensity interval training (HIIT) regimen on the content of mitophagy-related proteins, including Parkin, PINK-1, and OPTN, in the visceral adipose tissue of rats with type 2 diabetes.
Materials and Methods: In this experimental study, 24 male rats were divided into three groups: healthy control (HC), diabetic control (DC), and diabetic + HIIT exercise (D+HIIT). Type 2 diabetes was induced in the rats through streptozotocin (STZ) injection combined with a high-fat diet (HFD). The exercise group underwent eight weeks of HIIT. The intensity of the HIIT sessions was set at 85–90% of the rats' maximum running speed, while the low-intensity recovery intervals were performed at 50–60% of maximum speed. At the end of the HIIT intervention, visceral adipose tissue was extracted from each group, and the protein content of mitophagy markers, including Parkin, PINK-1, and OPTN, were measured using the Western blot technique.
Results: The results of this study showed that type 2 diabetes led to a significant reduction in the levels of Parkin (33%), PINK-1 (41%), and OPTN (46%) in the DC group compared to the HC group (p<0.001). However, in the D+HIIT group, HIIT exercise significantly increased these protein levels compared to the DC group, with Parkin, PINK-1, and OPTN levels increasing by 117.91%, 103.39%, and 536.36%, respectively (p<0.001). Additionally, HIIT exercise in the D+HIIT group resulted in a significant reductions in fasting glucose levels and the HOMA-IR index (p<0.001).
Conclusion: The results of this study indicate that HIIT has significant effects on the restoration of mitophagy-related proteins and the improvement of metabolic indices in visceral adipose tissue in an animal model of type 2 diabetes. These findings highlight the importance of exercise, particularly HIIT, in enhancing mitochondrial function and promoting cellular processes. However, given the animal-based nature of this study, extrapolating the results to patients with type 2 diabetes requires further investigation in human studies.

کلیدواژه‌ها [English]

  • Type 2 Diabetes
  • Mitophagy
  • Parkin
  • OPTN
  • HIIT
  1. Lima JE, Moreira NC, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2022;874:503437, Doi: https://doi.org/10.1016/j.mrgentox.2021.503437
  2. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxidative medicine and cellular longevity. 2020;2020(1):8609213, Doi: https://doi.org/10.1155/2020/8609213
  3. Apostolova N, Vezza T, Muntane J, Rocha M, Víctor VM. Mitochondrial dysfunction and mitophagy in type 2 diabetes: pathophysiology and therapeutic targets. Antioxidants & Redox Signaling. 2023;39(4-6):278-320, Doi: https://doi.org/10.1089/ars.2022.0016
  4. Tang S, Hao D, Ma W, Liu L, Gao J, Yao P, Yu H, Gan L, Cao Y. Dysfunctional mitochondria clearance in situ: mitophagy in obesity and diabetes-associated cardiometabolic diseases. Diabetes & Metabolism Journal. 2024 Feb 15;48(4):503-17, Doi: https://doi.org/10.4093/dmj.2023.0213
  5. Picca A, Faitg J, Auwerx J, Ferrucci L, D’Amico D. Mitophagy in human health, ageing and disease. Nature Metabolism. 2023;5(12):2047-61, Doi: https://doi.org/10.1038/s42255-023-00930-8
  6. Nguyen TN, Sawa-Makarska J, Khuu G, Lam WK, Adriaenssens E, Fracchiolla D, Shoebridge S, Bernklau D, Padman BS, Skulsuppaisarn M, Lindblom RS. Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Molecular cell. 2023 May 18;83(10):1693-709, Doi: https://doi.org/10.1016/j.molcel.2023.04.021
  7. Wang Y. TOMM7 Alleviates Diabetic Kidney Disease by Regulating PINK1/Parkin-Mediated Mitophagy via Intracellular Redistribution of PLA2G6: FR-PO277. Journal of the American Society of Nephrology. 2024;35(10S):10.1681, Doi: 10.1681/ASN.2024m1pbga1z
  8. Liu J, Yao C, Wang Y, Zhao J, Luo H. Non-drug interventions of traditional Chinese medicine in preventing type 2 diabetes: a review. Chinese Medicine. 2023;18(1):151, Doi: https://doi.org/10.1186/s13020-023-00854-1
  9. Santos A, Braaten K, MacPherson M, Vasconcellos D, Vis-Dunbar M, Lonsdale C, Lubans D, Jung ME. Rates of compliance and adherence to high-intensity interval training: a systematic review and Meta-analyses. International Journal of Behavioral Nutrition and Physical Activity. 2023 Nov 21;20(1):134, Doi: https://doi.org/10.1186/s12966-023-01535-w
  10. Coates AM, Joyner MJ, Little JP, Jones AM, Gibala MJ. A perspective on high-intensity interval training for performance and health. Sports Medicine. 2023;53(Suppl 1):85-96, Doi: https://doi.org/10.1007/s40279-023-01938-6
  11. Batterson PM, McGowan EM, Stierwalt HD, Ehrlicher SE, Newsom SA, Robinson MM. Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans. Journal of applied physiology. 2023;134(2):339-55, Doi: https://doi.org/10.1152/japplphysiol.00467.2022
  12. Golpasasndi S, Abdollahpour S, Golpasandi H. High-intensity interval training combined with saffron supplementation modulates stress-inflammatory markers in obese women with type 2 diabetes. Research in Exercise Nutrition. 2022;1(1):55-61, [In Persian], Doi: 10.34785/J019.2022.002
  13. Golpasandi H, Rahimi MR. The combined effect of high-intensity interval training along with vitamin D3 supplementation on mitophagy factors in heart tissue of rats induced to type II diabetes. Journal of Practical Studies of Biosciences in Sport. 2024 [In Persian], Doi: 10.22077/jpsbs.2024.8078.1907
  14. Farajpour Khazaei S, Sari Sarraf V. Effect of eight weeks of high-intensity interval training on some indices of liver mitophagy in type 2 diabetic rats. Yafteh. 2023;25(1), Doi: http://eprints.lums.ac.ir/id/eprint/4329
  15. Khosravi P, Shahidi F, Eskandari A, Khoramipour K. High-intensity interval training reduces Tau and beta-amyloid accumulation by improving lactate-dependent mitophagy in rats with type 2 diabetes. Iranian Journal of Basic Medical Sciences. 2024;27(11):1430, Doi: https://doi.org/10.22038/ijbms.2024.77038.16664
  16. Vakili J, Sari-Sarraf V, Farajpour Khazaei S. Effects of eight weeks of high-intensity interval training on the expression of Pink1 and Parkin proteins in the liver tissue of type 2 diabetic male rats. Journal of Sport and Exercise Physiology. 2023 Nov 22;16(3):101-9, Doi: https://doi.org/10.48308/joeppa.2023.103909
  17. Moustafa Mahmoud M, Abdel Hameed NQ, Adel Al Dreny Abd Al Latef B, Samir Kamar S, Ahmed Rashed L, Abdelhameed Gouda SA. High-intensity exercise alongside insulin alleviates muscle atrophy in type 1 diabetes mellitus concomitant with modulation of mitophagy-related proteins in skeletal muscle. Archives of Physiology and Biochemistry. 2024:1-13, Doi: https://doi.org/10.1080/13813455.2024.2410791
  18. Andonova M, Dzhelebov P, Trifonova K, Yonkova P, Kostadinov N, Nancheva K, Ivanov V, Gospodinova K, Nizamov N, Tsachev I, Chernev C. Metabolic markers associated with progression of type 2 diabetes induced by high-fat diet and single low dose streptozotocin in rats. Veterinary Sciences. 2023 Jul 2;10(7):431, Doi: https://doi.org/10.3390/vetsci10070431
  19. Mahatme S, Vaishali K, Kumar N, Rao V, Kovela RK, Sinha MK. Impact of high-intensity interval training on cardio-metabolic health outcomes and mitochondrial function in older adults: a review. Medicine and Pharmacy Reports. 2022;95(2):115, Doi: https://doi.org/10.15386/mpr-2201
  20. Al-Awar A, Kupai K, Veszelka M, Szűcs G, Attieh Z, Murlasits Z, Török S, Pósa A, Varga C. Experimental diabetes mellitus in different animal models. Journal of diabetes research. 2016;2016(1):9051426, Doi: https://doi.org/10.1155/2016/9051426
  21. Ali TM, Abo-Salem OM, El Esawy BH, El Askary A. The potential protective effects of diosmin on streptozotocin-induced diabetic cardiomyopathy in rats. The American Journal of the Medical Sciences. 2020;359(1):32-41, Doi: https://doi.org/10.1016/j.amjms.2019.10.005
  22. Guo X-x, Wang Y, Wang K, Ji B-p, Zhou F. Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University Science B. 2018;19(7):559, Doi: https://doi.org/10.1631/jzus.B1700254
  23. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV. Maximum oxygen consumption of rats and its changes with various experimental procedures. Journal of Applied Physiology. 1979;47(6):1278-83, Doi: https://doi.org/10.1152/jappl.1979.47.6.1278
  24. Golpasandi H, Rahimi MR. The Effect of High-Intensity Interval Training along with Vitamin D3 Injection on Inflammation Caused by Excessive Autophagy in Heart Tissue of Type 2 Diabetic Rats. Journal of Applied Health Studies in Sport Physiology. 2024:- [In Persian], Doi: https://doi.org/10.22049/jahssp.2024.29952.1679
  25. Hirano S. Western blot analysis. Nanotoxicity: methods and protocols. 2012:87-97.
  26. Li X, Yang JY, Hu WZ, Ruan Y, Chen HY, Zhang Q, Zhang Z, Ding ZS. Mitochondria‐associated membranes contribution to exercise‐mediated alleviation of hepatic insulin resistance: Contrasting high‐intensity interval training with moderate‐intensity continuous training in a high‐fat diet mouse model. Journal of Diabetes. 2024 Apr;16(4):e13540, Doi: https://doi.org/10.1111/1753-0407.13540
  27. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Frontiers in physiology. 2020 Jan 29;10:1607, Doi: https://doi.org/10.3389/fphys.2019.01607
  28. Paglialunga S, Ludzki A, Root-McCaig J, Holloway GP. In adipose tissue, increased mitochondrial emission of reactive oxygen species is important for short-term high-fat diet-induced insulin resistance in mice. Diabetologia. 2015;58:1071-80, Doi: https://doi.org/10.1007/s00125-015-3531-x
  29. Gonzalez-Franquesa A, Patti M-E. Insulin resistance and mitochondrial dysfunction. Mitochondrial Dynamics in Cardiovascular Medicine. 2017:465-520, Doi: https://link.springer.com/chapter/10.1007/978-3-319-55330-6_25
  30. Wang Y, Wang J, Tao SY, Liang Z, Xie R, Liu NN, Deng R, Zhang Y, Deng D, Jiang G. Mitochondrial damage‐associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus. Diabetes/Metabolism Research and Reviews. 2024 Feb;40(2):e3733, Doi: https://doi.org/10.1002/dmrr.3733
  31. Youssef L, Granet J, Marcangeli V, Dulac M, Hajj-Boutros G, Reynaud O, Buckinx F, Gaudreau P, Morais JA, Mauriège P, Gouspillou G. Clinical and biological adaptations in obese older adults following 12-weeks of high-intensity interval training or moderate-intensity continuous training. InHealthcare 2022 Jul 20 (Vol. 10, No. 7, p. 1346). MDPI, Doi: https://doi.org/10.3390/healthcare10071346
  32. Cui K. Human skeletal muscle transcriptomic analysis of pathways associated with autophagy and mitophagy in response to a single session of high-intensity interval exercise in hypoxia: Victoria University; 2024, Doi: https://vuir.vu.edu.au/48044/
  33. Wang J, Qiu Y, Yang L, Wang J, He J, Tang C, Yang Z, Hong W, Yang B, He Q, Weng Q. Preserving mitochondrial homeostasis protects against drug-induced liver injury via inducing OPTN (optineurin)-dependent Mitophagy. Autophagy. 2024 Dec 1;20(12):2677-96, Doi: https://doi.org/10.1080/15548627.2024.2384348
  34. Chen K, Dai H, Yuan J, Chen J, Lin L, Zhang W, Wang L, Zhang J, Li K, He Y. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death & Disease. 2018 Jan 24;9(2):105, Doi: https://doi.org/10.1038/s41419-017-0127-z
  35. Shahouzehi B, Masoumi-Ardakani Y, Aminizadeh S. Investigating the effect of calcitonin gene-related peptide antagonist and exercise trainings in rat aorta: Mitophagy, mitochondrial biogenesis, and apoptosis. Chemical Biology Letters. 2025;12(1):1256-, Doi: https://doi.org/10.62110/sciencein.cbl.2025.v12.1256
  36. Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal transduction and targeted therapy. 2023 Aug 16;8(1):304, doi: https://doi.org/10.1038/s41392-023-01503-7
  37. Su Z, Nie Y, Huang X, Zhu Y, Feng B, Tang L, Zheng G. Mitophagy in hepatic insulin resistance: therapeutic potential and concerns. Frontiers in pharmacology. 2019 Oct 10;10:1193, doi: https://doi.org/10.3389/fphar.2019.01193
  38. Novak I. Mitophagy: a complex mechanism of mitochondrial removal. Antioxidants & redox signaling. 2012;17(5):794-802, Doi: https://doi.org/10.1089/ars.2011.4407
  • تاریخ دریافت: 07 بهمن 1403
  • تاریخ بازنگری: 16 اسفند 1403
  • تاریخ پذیرش: 22 اسفند 1403
  • تاریخ اولین انتشار: 22 اسفند 1403
  • تاریخ انتشار: 01 مهر 1404