تاثیر هشت هفته تمرین هوازی تداومی و تناوبی شدید بر سطوح SIRT3 بافت عضله اسکلتی موش صحرایی چاق ویستار

نوع مقاله : علمی - پژوهشی

نویسندگان

shahid beheshti university کدپستی:

چکیده

هدف تحقیق: سیرت 3 یکی از اعضای خانواده پروتئین دی استیلازهای سیرتوئین است که در میتوکندری قرار دارد و عملکرد میتوکندری را تنظیم می کند. هدف از مطالعه حاضر بررسی تاثیر هشت هفته تمرین هوازی تداومی و تناوبی شدید بر سطوح SIRT3 بافت عضله اسکلتی موش صحرایی چاق ویستار بود. روش تحقیق: 24 موش صحرایی بطور تصادفی به چهار گروه 6 تایی: 1) چاق- تمرین تناوبی (HIIT)؛ 2) چاق- تمرین تداومی (CT)؛ 3) کنترل چاق (OB) و 4) کنترل غیرچاق (Cont.) تقسیم شدند. در کل دوره تحقیق به موش­های گروه های 1، 2 و 3 غذای پرچرب داده می شد. پس از آشناسازی، موش های گروه CT و HIIT به مدت هشت هفته سه جلسه در هفته به ترتیب تمرین تداومی هوازی و تمرین تناوبی با شدت بالا را انجام دادند. 48 ساعت پس از آخرین جلسه تمرینی، موش­ها تشریح شدند. نتایج: بررسی وسترن بلاتینگ نشان داد که میزان سیرت 3 عضله نعلی در گروه های HIIT و CT نسبت به گروه های OB و Cont. بطور معنی داری بیشتر بود (05/0< P). همچنین میزان سیرت 3 گروه HIIT نسبت به گروه CT بیشتر بود که البته معنی دار نبود. همچنین تفاوت معنی داری بین میزان سیرت 3 گروه OB و Cont. مشاهده نشد؛ با اینحال میزان سیرت 3 در گروه OB کمتر بود. بحث و نتیجه­گیری: به نظر میرسد استفاده از تمرینات HIIT می تواند به اندازه تمرینات تداومی بر عملکرد میتوکندری بافت عضلانی و در نهایت بر طول عمر بویژه در افراد چاق موثر باشند و باعث افزایش فاکتورهای مهمی همچون سیرت 3 شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of eight-week aerobic continuous and high intensity interval training on levels of Sirt3 in wistar rat’s skeletal muscle tissue

چکیده [English]

Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. The aim of this study was to investigate the effect of eight-weeks aerobic continuous and high intensity interval training on levels of Sirt3 in wistar rat’s skeletal muscle tissue. Methods: 24 vistar rats were randomly divided into six groups consisted of: 1) Obese- High-intensity interval training, 2) Obese- Continues training 3) Obese control and 4) Non-Obese control. In the whole period of study, were given a high fat diet to groups of rat 1, 2 and 3. After familiarization, CT and HIIT rats performed aerobic continuous training and high intensity interval training three times a week for eight weeks, respectively. 48 hours after the last training session, the mice were sacrificed. Results: Western blotting study showed that the amount of SIRT3 protein of Soleus muscle in HIIT and CT groups was higher than OB and Cont. group significantly (p< 0/05). Also, The SIRT3 content was higher in HIIT group than in CT group, but not significant. Also, no significant difference was observed between the SIRT3 content of OB and Cont.. However, the SIRT3 content was lower in OB group. Conclusion: It seems that Using HIIT exercise can be effective as continuous training on muscle mitochondrial function and ultimately contribute to longevity, especially in obese patients and raises important factors such as SIRT3.

کلیدواژه‌ها [English]

  • Interval training
  • Obesity-Aging- Sirtuins
Trillou CR, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand J-P, et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2003;284(2):R345-R53.
Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. New England Journal of Medicine. 2000;342(19):1378-84.
Formiguera X, Canton A. Obesity: epidemiology and clinical aspects. Best practice & research Clinical gastroenterology. 2004;18(6):1125-46.
Anandacoomarasamy A, Fransen M, March L. Obesity and the musculoskeletal system. Current opinion in rheumatology. 2009;21(1):71-7.
Strandberg TE, Stenholm S, Strandberg AY, Salomaa VV, Pitkälä KH, Tilvis RS. The “obesity paradox,” frailty, disability, and mortality in older men: a prospective, longitudinal cohort study. American journal of epidemiology. 2013:kwt157.
Haslam D, James W. Obesity lJ J. Lancet. 2005;366(9492):1.
Dixon JB. The effect of obesity on health outcomes. Molecular and cellular endocrinology. 2010;316(2):104-8.
LANE MA, INGRAM DK, ROTH GS. 2-Deoxy-D-glucose feeding in rats mimics physiologic effects of calorie restriction. Journal of Anti-Aging Medicine. 1998;1(4):327-37.
Gan L. Therapeutic potential of sirtuin-activating compounds in Alzheimer’s disease. Drug News Perspect. 2007;20(4):233-9.
Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward Jr, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY). 2009;1(9):771-83.
Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes & development. 2006;20(21):2913-21.
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochemical Journal. 2007;404(1):1-13.
Guarente L, Picard F. Calorie restriction—the SIR2 connection. Cell. 2005;120(4):473-82.
Dali‐Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of medicine. 2007;39(5):335-45.
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annual review of pathology. 2010;5:253.
Lombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Histone Deacetylases: the Biology and Clinical Implication: Springer; 2011. p. 163-88.
Toiber D, Sebastian C, Mostoslavsky R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Histone Deacetylases: the Biology and Clinical Implication: Springer; 2011. p. 189-224.
Zhong L, Mostoslavsky R. Fine tuning our cellular factories: sirtuins in mitochondrial biology. Cell metabolism. 2011;13(6):621-6.
Guarente L. Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell. 2008;132(2):171-6.
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular biology of the cell. 2005;16(10):4623-35.
North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004;5(5):224.
Hallows WC, Albaugh BN, Denu JM. Where in the cell is SIRT3?–functional localization of an NAD+-dependent protein deacetylase. Biochemical Journal. 2008;411(2):e11-e3.
Cooper HM, Spelbrink JN. The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochemical Journal. 2008;411(2):279-85.
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. Journal of Biological Chemistry. 2005;280(14):13560-7.
Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proceedings of the National Academy of Sciences. 2002;99(21):13653-8.
Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir) 2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide–dependent deacetylase. The Journal of cell biology. 2002;158(4):647-57.
Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and cellular biology. 2007;27(24):8807-14.
Bellizzi D, Dato S, Cavalcante P, Covello G, Di Cianni F, Passarino G, et al. Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics. 2007;89(1):143-50.
Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85(2):258-63.
Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne A, George W, et al. Altered sirtuin expression is associated with node-positive breast cancer. British journal of cancer. 2006;95(8):1056-61.
Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130(6):1095-107.
White AT, Schenk S. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. American Journal of Physiology-Endocrinology and Metabolism. 2012;303(3):E308-E21.
Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008;57(11):2933-42.
Gurd BJ, Holloway GP, Yoshida Y, Bonen A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase–independent manner. Metabolism. 2012;61(5):733-41.
Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K, Kawanaka K. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. Journal of applied physiology. 2010;109(2):332-40.
Bua EA, McKiernan SH, Wanagat J, McKenzie D, Aiken JM. Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. Journal of applied physiology. 2002;92(6):2617-24.
Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging cell. 2008;7(1):2-12.
Dirks AJ, Leeuwenburgh C. Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radical Biology and Medicine. 2004;36(1):27-39.
Martin C, Dubouchaud H, Mosoni L, Chardigny JM, Oudot A, Fontaine E, et al. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius. Aging cell. 2007;6(2):165-77.
WANAGAT J, CAO Z, PATHARE P, AIKEN JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. The FASEB Journal. 2001;15(2):322-32.
Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism. 2013;17(2):162-84.
Adams GR, Hather BM, Baldwin KM, Dudley GA. Skeletal muscle myosin heavy chain composition and resistance training. Journal of Applied Physiology. 1993;74(2):911-5.
Widrick JJ, Stelzer JE, Shoepe TC, Garner DP. Functional properties of human muscle fibers after short-term resistance exercise training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2002;283(2):R408-R16.
Spina RJ, Chi M, Hopkins MG, Nemeth P, Lowry O, Holloszy J. Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. Journal of Applied Physiology. 1996;80(6):2250-4.
Green H, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, Farrance B. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. Journal of Applied Physiology. 1992;72(2):484-91.
Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2008;295(6):E1427-E38.
Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. The Journal of physiology. 2003;546(3):851-8.
Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. Journal of applied physiology. 2009;106(3):929-34.
Godin G, Desharnais R, Valois P, Lepage L, Jobin J, Bradet R. Differences in perceived barriers to exercise between high and low intenders: observations among different populations. American Journal of Health Promotion. 1994;8(4):279-385.
Gibala MJ, Ballantyne C. High-intensity interval training: New insights. Sports Science Exchange. 2007;20(2):1-5.
Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic High-Intensity Intervals Improve VO~ 2~ m~ a~ x More Than Moderate Training. Medicine and science in sports and exercise. 2007;39(4):665.
Takeda M, Imaizumi M, Sawano S, Manabe Y, Fushiki T. Long-term optional ingestion of corn oil induces excessive caloric intake and obesity in mice. Nutrition. 2001;17(2):117-20.
Von Diemen V, Trindade EN, Trindade MRM. Experimental model to induce obesity in rats. Acta Cirurgica Brasileira. 2006;21(6):425-9.
Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV. Maximum oxygen consumption of rats and its changes with various experimental procedures. Journal of Applied Physiology. 1979;47(6):1278-83.
Leandro CG, Levada AC, Hirabara SM, MANHAS-DE-CASTRO R, De-Castro CB, Curi R, et al. APROGRAM OF MODERATE PHYSICAL TRAINING FOR WISTAR RATS BASED ON MAXIMAL OXYGEN CONSUMPTION. The Journal of Strength & Conditioning Research. 2007;21(3):751-6.
Haram PM, Kemi OJ, Lee SJ, Bendheim MØ, Al-Share QY, Waldum HL, et al. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovascular research. 2009;81(4):723-32.
Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595-607.
Ardern CI, Janssen I, Ross R, Katzmarzyk PT. Development of health‐related waist circumference thresholds within BMI categories. Obesity research. 2004;12(7):1094-103.
Feldeisen SE, Tucker KL. Nutritional strategies in the prevention and treatment of metabolic syndrome. Applied physiology, nutrition, and metabolism. 2007;32(1):46-60.
Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Molecular cell. 2011;44(2):177-90.
Taubes G. Prosperity's plague. Science. 2009;325(5938):256-60.
Simoneau J-A, Kelley DE. Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. Journal of Applied Physiology. 1997;83(1):166-71.
Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944-50.
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140-2.
Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(15):5618-23.
Imai S-I, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795-800.
Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587-91.
Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences. 2008;105(38):14447-52.
Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Molecular and cellular biology. 2008;28(20):6384-401.
Suwa M, Nakano H, Radak Z, Kumagai S. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle. Metabolism. 2008;57(7):986-98.
Marfe G, Tafani M, Pucci B, Di Stefano C, Indelicato M, Andreoli A, et al. The effect of marathon on mRNA expression of anti-apoptotic and pro-apoptotic proteins and sirtuins family in male recreational long-distance runners. BMC physiology. 2010;10(1):1.
Hodge T, Starnes J, Feger B, Hixson L, Harris MB. Effects of exercise and body temperature on eNOS, SIRT1, SIRT3 and Hsp70 expression in rat plantaris muscles (1164.6). The FASEB Journal. 2014;28(1 Supplement):1164.6.
Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci. 2013;5:48.
Chen D, Bruno J, Easlon E, Lin S-J, Cheng H-L, Alt FW, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes & development. 2008;22(13):1753-7.
Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low‐volume high‐intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. The Journal of physiology. 2010;588(6):1011-22.
Sahlin K, Katz A, Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochemical Journal. 1987;245(2):551-6.
Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056-60.
Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences. 2011;108(35):14608-13.