تاثیر هشت هفته تمرین هوازی تداومی و تناوبی شدید بر سطوح SIRT3 بافت عضله اسکلتی موش های صحرایی چاق ویستار

نوع مقاله : علمی - پژوهشی

نویسندگان

چکیده

هدف: سیرت 3 یکی از اعضای خانواده پروتئین دی استیلازهای سیرتوئین است که در میتوکندری قرار دارد و عملکرد میتوکندری را تنظیم می کند. هدف از مطالعه حاضر بررسی تاثیر هشت هفته تمرین هوازی تداومی و تناوبی شدید بر سطوح SIRT3 بافت عضله اسکلتی موش صحرایی چاق ویستار بود. روش پژوهش: 24 موش صحرایی بطور تصادفی به چهار گروه 6 تایی: 1) چاق- تمرین تناوبی (HIIT)؛ 2) چاق- تمرین تداومی (CT)؛ 3) کنترل چاق (OB) و 4) کنترل غیرچاق (Cont.) تقسیم شدند. طی دوره تحقیق به موش­های گروه های 1، 2 و 3 غذای پرچرب داده شد. پس از آشناسازی، موش های گروه CT و HIIT به مدت هشت هفته سه جلسه در هفته به ترتیب تمرین تداومی هوازی و تمرین تناوبی با شدت بالا را انجام دادند. 48 ساعت پس از آخرین جلسه تمرینی، موش­ها تشریح شدند. نتایج: بررسی وسترن بلاتینگ نشان داد که میزان سیرت 3 عضله نعلی در گروه های HIIT و CT نسبت به گروه های OB و Cont. بطور معنی داری بیشتر بود (05/0< P). همچنین میزان سیرت 3 گروه HIIT نسبت به گروه CT بیشتر بود که البته معنی دار نبود. همچنین تفاوت معنی داری بین میزان سیرت 3 گروه OB و Cont. مشاهده نشد؛ با این‌حال میزان سیرت 3 در گروه OB کمتر بود. نتیجه­گیری: به نظر می‌رسد استفاده از تمرینات HIIT می تواند به اندازه تمرینات تداومی بر عملکرد میتوکندری بافت عضلانی و در نهایت بر طول عمر بویژه در افراد چاق موثر باشند و باعث افزایش فاکتورهای مهمی همچون سیرت 3 شوند.

کلیدواژه‌ها


Trillou CR, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand J-P, et al. (2003). Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.284 (2): R345-R53.
Peppard PE, Young T, Palta M, Skatrud J. (2000). Prospective study of the association between sleep-disordered breathing and hypertension. New England Journal of Medicine.342 (19): 1378-84.
Formiguera X, Canton A. (2004). Obesity: epidemiology and clinical aspects. Best practice & research Clinical gastroenterology.18 (6): 1125-46.
Anandacoomarasamy A, Fransen M, March L. (2009). Obesity and the musculoskeletal system. Current opinion in rheumatology.21 (1): 71-7.
Strandberg TE, Stenholm S, Strandberg AY, Salomaa VV, Pitkälä KH, Tilvis RS. (2013). The “obesity paradox,” frailty, disability, and mortality in older men: a prospective, longitudinal cohort study. American journal of epidemiology. kwt157.
Haslam D, James W. (2005). Obesity lJ J. Lancet.366 (9492): 1.
Dixon JB. (2010). The effect of obesity on health outcomes. Molecular and cellular endocrinology.316 (2): 104-8.
LANE MA, INGRAM DK, ROTH GS. (1998). 2-Deoxy-D-glucose feeding in rats mimics physiologic effects of calorie restriction. Journal of Anti-Aging Medicine.1 (4): 327-37.
Gan L. (2007). Therapeutic potential of sirtuin-activating compounds in Alzheimer’s disease. Drug News Perspect.20 (4): 233-9.
10. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward Jr, et al. (2009). Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY).1 (9): 771-83.
Haigis MC, Guarente LP. (2006). Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes & evelopment.20 (21): 2913-21.
Michan S, Sinclair D. (2007). Sirtuins in mammals: insights into their biological function. Biochemical Journal.404 (1): 1-13.
Guarente L, Picard F. (2005). Calorie restriction—the SIR2 connection. Cell.120 (4): 473-82.
Dali- Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. (2007). Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of medicine.39 (5): 335-45.
Haigis MC, Sinclair DA. (2010). Mammalian sirtuins: biological insights and disease relevance. Annual review of pathology.5: 253.
ombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Histone Deacetylases: the Biology and Clinical Implication: Springer; 2011. p. 163-88.
Toiber D, Sebastian C, Mostoslavsky R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Histone Deacetylases: the Biology and Clinical Implication: Springer; 2011. p. 189-224.
Zhong L, Mostoslavsky R. (2011). Fine tuning our cellular factories: sirtuins in mitochondrial biology. Cell metabolism.13 (6): 621-6.
Guarente L. (2008). Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell.132 (2): 171-6.
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular biology of the cell.16 (10): 4623-35.
North BJ, Verdin E. (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol.5 (5): 224.
Hallows WC, Albaugh BN, Denu JM. (2008). Where in the cell is SIRT3?–functional localization of an NAD+-dependent protein deacetylase. Biochemical Journal.411 (2): e11-e3.
Cooper HM, Spelbrink JN. (2008). The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochemical Journal.411 (2): 279-85.
Shi T, Wang F, Stieren E, Tong Q. (2005). SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. Journal of Biological Chemistry.280 (14): 13560-7.
Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. (2002). SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proceedings of the National Academy of Sciences.99 (21): 13653-8.
Schwer B, North BJ, Frye RA, Ott M, Verdin E. (2002). The human silent information regulator (Sir) 2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide–dependent deacetylase. The Journal of cell biology.158 (4): 647-57.
Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. (2007). Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and cellular biology.27 (24): 8807-14.
Bellizzi D, Dato S, Cavalcante P, Covello G, Di Cianni F, Passarino G, et al. (2007). Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics.89 (1): 143-50.
Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. (2005). A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics.85 (2): 258-63.
Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne A, George W, et al. (2006). Altered sirtuin expression is associated with node-positive breast cancer. British journal of cancer.95 (8): 1056-61.
Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell.130 (6): 1095-107.
White AT, Schenk S. (2012). NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. American Journal of Physiology-Endocrinology and Metabolism.303 (3): E308-E21.
Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, et al. (2008). Endurance exercise as a countermeasure for aging. Diabetes.57 (11): 2933-42.
Gurd BJ, Holloway GP, Yoshida Y, Bonen A. (2012). In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase–independent manner. Metabolism.61 (5): 733-41.
Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K, Kawanaka K. (2010). Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. Journal of applied physiology.109 (2): 332-40.
Bua EA, McKiernan SH, Wanagat J, McKenzie D, Aiken JM. (2002). Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. Journal of applied physiology.92 (6): 2617-24.
Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. (2008). Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging cell.7 (1): 2-12.
Dirks AJ, Leeuwenburgh C. (2004). Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radical Biology and Medicine.36 (1): 27-39.
Martin C, Dubouchaud H, Mosoni L, Chardigny JM, Oudot A, Fontaine E, et al. (2007). Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius. Aging cell.6 (2): 165-77.
WANAGAT J, CAO Z, PATHARE P, AIKEN JM. (2001). Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. The FASEB Journal.15 (2): 322-32.
Egan B, Zierath JR. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism.17 (2): 162-84.
Adams GR, Hather BM, Baldwin KM, Dudley GA. (1993). Skeletal muscle myosin heavy chain composition and resistance training. Journal of Applied Physiology.74 (2): 911-5.