پایش پاسخهای استرسی و التهابی سیستمیک متعاقب پروتکل تمرینی آکسفورد با و بدون مکمل گیاهی زنجبیل در مردان ورزشکار 2

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشگاه مازندران

چکیده

چکیدهکراتین کیناز ،(HSP) هدف: هدف این مطالعه، بررسی اثر مکمل ضد التهابی زنجبیل بر تغییرات مقادیر پروتئین شوک گرماییبه ترتیب به عنوان مارکرهای استرس سلولی، آسیب سلولی و مارکر التهابی متعاقب (CRP) C و پروتئین واکنش پذیر (CK)اجرای پروتکل تمرینی قدرتی به روش آکسفورد (الگوی باردهی کاهنده) در مردان جوان والیبالیست بود.روششناسی: 20 مرد ورزشکار در یک طرح طولی به طور تصادفی به دو گروه تمرین قدرتی آکسفورد با و بدون مکمل زنجبیل(گروه تجربی) و گروه دارونما همراه با اجرای تمرین قدرتی آکسفورد (با و بدون دارونمایی موسوم به نشاسته) تقسیم شدند.آزمودنیهای گروه تجربی 3 گرم پودر زنجبیل را در سه وعده (هر وعده یک گرم) مصرف کردند. گروه دارونما نیز یک کپسولحاوی 1 گرم نشاسته (دارونما)، را با همان شیوه و مدت زمان گروه تجربی مصرف میکردند. خونگیری از آزمودنیهای تحقیق در3 مرحله بلافاصله قبل، بلافاصله بعد و 24 ساعت پس از انجام تمرین آکسفورد انجام شد. برای مطالعه اثر پروتکل تمرین قدرتی ویا اثر مکمل در مراحل مختلف از روش آنالیز واریانس در اندازه گیری های مکرر استفاده شد.در بلافاصله بعد از انجام CRP و CK و افزایش غیرمعنیدار مقادیر HSP نتایج: تمرین آکسفورد باعث افزایش معنی دار مقادیر 72آن شد و این افزایش حتی پس از 24 ساعت بعد از آن به وضعیت اولیه بازنگشت. مکملگیری زنجبیل باعث کاهش معنیدارشاخصهای استرسی و التهابی مذکور در مرحله ی بلافاصله بعد از اتمام تمرین آکسفورد شد، اما باعث مهار کامل این شاخصها درمقایسه با گروه دارونما نشد.بحث و نتیجهگیری: مصرف مکمل زنجبیل قبل از اجرای فعالیتهای ورزشی یک روش درمانی جایگزین برای مهار افزایش و یاتخفیف اثرات التهابی و استرسی ناشی از پروتکل تمرینی سنگین میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring stress response and systemic inflammatory following exercise protocol Oxford with and without herbal supplement ginger in male athletes

چکیده [English]


Introduction: The purpose of this study was to investigate the effect of anti-inflammatory of ginger supplementation on changes in values changes heat shock protein (HSP), creatine Kinase(CK) and C-reactive protein(CRP), respectively, as markers of cellular stress, cell damage and inflammation following the Oxford, protocol in volleyball young men.
Methods: 20 male athletes in a longitudinal randomized into groups: Oxford strength training with and without supplemental Ginger (experimental group) and placebo group with Oxford training the (with and without the so- called starch placebo) divided were. The subjects of the experimental group, flour of ginger 3 grams in three servings (1 gram in per serving), before they consume three servings of food. A placebo group consumed capsules containing 1 g of starch. Blood sampling of the Study subjects collected at 3stage immediately before, immediately after and 24 hours after strength training reducer. One-way ANOVA for repeated measures used to study the effect of strength training protocol or complementary effect in the different stages.
Results: exercise protocol Oxford in Lead significantly increased of HSP72 and
nosignificant increases levels of
CK and CRP immediately after it was on the rise, even after 24 hours, then returned to original condition. Ginger supplementation cause significant reduce levels of the aforesaid stress and inflammatory markers following the implementation of exercise protocol Oxford, but no complete inhibition of the index following the exercise protocol Oxford in compared with placebo.
Conclusion: Ginger supplementation before exercise an alternative therapies to suppress or enhance Inhibition inflammation and alleviate the effects of stress, Due to heavy exercise protocol.

کلیدواژه‌ها [English]

  • Ginger supplement
  • Oxford strength training
  • stress proteins
  • Creatine kinase
  • C
  • reactive protein
  1. منابع
  2. رجبی حمید، رزمجو سحر، جنتی معصومه، ظریفی
  3. آیدین( 1389 ). ارتباط پاسخهای عاملهای رشدی شبه
  4. انسولینی و کراتین کیناز پس از یک جلسه و دورهی
  5. شش هفتهای مقاومتی هرمی و هرمی واژگون در
  6. .29-42 :( 50) دختران غیر ورزشکار.المپیک. 2
  7. Miles MP., Andring JM., Pearson SD., Gordon
  8. LK., Kasper C., Depner CM., et al. (2008).
  9. Diurnal variation, response to eccentric
  10. exercise,and damage variables association of
  11. inflammatory mediators with muscle. J Appl
  12. Physiol .104: 451-458.
  13. Atashak S., Piri M., AfsharJafari M.,
  14. Azarbayjani A. (2010). Effects of 10 Week
  15. Resistance Training and Ginger Consumption on
  16. C-reactive protein and Some Cardiovascular
  17. Risk Factors in Obese Men. Physiology and
  18. Pharmacology. 14(3): 318-328.
  19. Ogawa K.,Sanada K., Machida S., Okutsu M.,
  20. Suzuki K. (2010). Resistance exercise traininginduced
  21. muscle hypertrophy was associated with
  22. reduction of inflammatory markers in elderly
  23. women. Mediators Inflamm . doi: 1155/171023.
  24. Grebenyuk ES., Stupnikova TV., Sakharov DA.,
  25. Shleptsova VA., Sashchenko LP., Tonevitsky
  26. EA. (2010). Long-term exercises increase the
  27. concentration of HspBP1, a co-chaperone of 70-
  28. KDa heat shock protein. Bull Exp Biol Med .
  29. (5): 640-4.
  30. Calabrese V., Cornelius C., Leso V., Trovato-
  31. Salinaro A., Ventimiglia B., Cavallaro M., et al.
  32. (2012). Oxidative stress, glutathione status,
  33. sirtuin and cellular stress response in type 2
  34. diabetes . Biochim Biophys Acta . 1822(5): 729-
  35.  
  36. Yuji O., Hisashi N., Mitsutoshi K., Takao S.,
  37. Junichiro A., Shizuo K. (2006). Sprint-interval
  38. Training Induces Heat Shock Protein 72 In Rat
  39. Skeletal Muscles. Journal of Sports Science and
  40. Medicine . 194-201.
  41. Hamilton KL., Powers SK., Sugiura T., Kim S.,
  42. Lennon S., Tumer N., Mehta JL. (2001). Shortterm
  43. exercise training can improve myocardial
  44. tolerance to I/R without elevation in heat shock
  45. proteins. Am J Physiol Heart Circ Physiol .
  46. -1352.
  47. Milne K.J, Noble E.G. (2002). Exercise-induced
  48. elevation of HSP70 is intensity dependent.
  49. Journal of Applied Physiology . 93: 561-568.
  50. Morton JP., Maclaren DP., Cable NT., Campbell
  51. IT., Evans L., Bongers T., et al. (2007). Elevated
  52. core and muscle temperature to levels
  53. comparable to exercise do not increase heat
  54. shock protein content of skeletal muscle of
  55. physically active men. Acta Physiol (Oxf).
  56. (4):319-27.
  57. . دبیدی روشن ولیاله، عبدی حمزه کلایی هدی
  58. ). تاثیر دمای محیط بر تغییر ناشی از تمرین )
  59. برونگرایی مقادیر پروتئین شوک گرمایی در دختران
  60. .77-99 : فعال. حرکت. 23
  61. Febbraio MA., Steensberg A., Walsh R.,
  62. Koukoulas I., van Hall G., Saltin B., et al.
  63. (2002). Reduced glycogen availability is
  64. associated with an elevation in HSP72 in
  65. contracting human skeletal muscle. Journal of
  66. Physiology. 538: 911–917.
  67. . دبیدی روشن ولی اله، عبدی حمزه کلایی هدی،
  68. موسوی سید غلامرضا ( 1387 ). تاثیر یک جلسه دوی
  69. استقامتی فزاینده و تمرین با وزنه بر پاسخ پروتئین
  70. شوک گرمایی زنان جوان فعال. علوم حرکتی و ورزش.
  71. .77-86 :12
  72. Black C.D., & Oconnor, P.J. (2008). Acute
  73. effects of dietary ginger on quadriceps muscle
  74. pain during moderate-intensity cycling exercise.
  75. Int J Sport Nutr Exerc Metab, 18(6) :653-64.
  76. Tkačova J., Angelovičova M. (2012). Heat
  77. Shock Proteins (HSPs): a Review.Animal
  78. Science and Biotechnologies. 45 (1).
  79. da Silva D.P., Curty V., Areas JM., Souza S.C.,
  80. Hackney A.C., Machado M. (2009).
  81. Comparison Of Delorme With Oxford
  82. Resistance Training Techniques: Effects Of
  83. Training On Muscle Damage Markers.Biology of
  84. Sport . 77-81
  85. Sesti F., Tsitsilonis OE., Kotsinas A., Trougakos
  86. IP. (2012). Oxidative stress-mediated
  87. biomolecular damage and inflammation in
  88. tumorigenesis. 26(3):395-402.
  89. Federico A., Morgillo F., Tuccillo C., Ciardiello
  90. F., Loguercio C.(2007). Chronic inflammation
  91. and oxidative stress in human carcinogenesis. Int
  92. J Cancer .121(11):2381-6.
  93. Piva SJ., Tatsch E., De Carvalho JA., Bochi GV.,
  94. Kober H,, Duarte T.,et al. (2012). Assessment of
  95. Inflammatory and Oxidative Biomarkers in
  96. Obesity and Their Associations with Body Mass
  97. Index. Inflammation .
  98. Simar D., Malatesta D., Mas E., Delage M.,
  99. Caillaud C. (2012). Effect of an 8-weeks aerobic
  100. training program in elderly on oxidative stress
  101. and HSP72 expression in leukocytes during
  102. پایش پاسخهای استرسی و التهابی سیستمیک متعاقب پروتکل تمرینی آکسفورد با و بدون مکمل گیاهی زنجبیل در مردان ورزشکار 847
  103. antioxidant supplementation.J Nutr Health Aging
  104. . 16(2): 155-61.
  105. Grzanna R., Phan P., Polotsky A., Lindmark L.,
  106. Frondoza CG. (2004). Ginger extract inhibits
  107. beta-amyloid peptide induced cytokine and
  108. chemokine expression in cultured THP-1
  109. monocytes. J Altern Complement Med . 10:
  110. -1013.
  111. Ueda H., Ippoushi K., Takeuchi A. (2010).
  112. Repeated oral administration of a squeezed
  113. ginger (Zingiber officinale) extract augmented
  114. the serum corticosterone level and had antiinflammatory
  115. properties. Biosci Biotechnol
  116. Biochem . 74(11):2248-52.
  117. Shimoda H., Shan SJ., Tanaka J., Seki A., Seo
  118. JW., Kasajima N.(2010). Anti-inflammatory
  119. properties of red ginger (Zingiber officinale var.
  120. Rubra) ) extract and suppression of nitric oxide
  121. production by its constituents.J med food .
  122. (1):156-62.
  123. Penna SC., Medeiros MV., Aimbire FS., Faria-
  124. Neto HC., Sertie JA., Lopes-Martins RA.(2003).
  125. Anti-inflammatory effect of the hydralcoholic
  126. extract of Zingiber officinale rhizomes on rat
  127. paw and skin edema. Phytomedicine. 10(5):381-
  128.  
  129. Ojewole JA., Analgesic.(2006).
  130. antiinflammatory and hypoglycaemic effects of
  131. ethanol extract of Zingiber officinale (Roscoe)
  132. rhizomes (Zingiberaceae) in mice and rats.
  133. Phytother Res . 20(9):764-72.
  134. Andrzejewski M., Marcin., Chmura J., Wiacek.,
  135. Magdalena., Zubrzycki Igor Z(2008). The
  136. influence of individualizing physical lods on
  137. speed, ceratin kinaz activity and lactate
  138. dehydrogenize in football players. Biology of
  139. Sport . 25(2):135-146.
  140. Glyn H., Michael H., Stuart G., Jamie T., Phillip
  141. G., Duncan N.(2012). Exercise-induced muscle
  142. damage is reduced in resistance-trained males by
  143. branched chain amino acids: a randomized,
  144. double-blind, placebo controlled study. Journal
  145. of the International Society of Sports Nutrition .
  146. Christian., Natalie J., Basu S.,Bengt V., Anders
  147. K., Lars-Bo¨rje., et al.(2006). Vitamin E isoformspecific
  148. inhibition of the exercise-induced .heat
  149. shock protein 72 expression in humans. J Appl
  150. Physiol . 1679–1687.
  151. Martin W., Gary J., Walker., Nicolette C.,
  152. Bishop. (2006). Effect of caffeine
  153. supplementation on the extracellular heat shock
  154. protein 72 response to exercise. J Appl Physiol .
  155. : 1222–1227.
  156. Christopher D. Black., Marttew P., David J.,
  157. Patrick J.(2010). Ginger (Zingiber officinale)
  158. Reduces Muscle Pain Caused by Eccentric
  159. Exercise. The Journal of Pain .11: 894-903.
  160. Khassaf M., McArdle A., Esanu C., Vasilaki A.,
  161. McArdle F., Griffiths RD., et al. (2003). Effect
  162. of vitamin C supplements on antioxidant defence
  163. and stress proteins in human lymphocytes and
  164. skeletal muscle. J Physiol. 549: 645–652
  165. Dugasani S., Pichika MR., Nadarajah VD.,
  166. Balijepalli MK., Tandra S., Korlakunta JN.
  167. (2010). Comparative antioxidant and antiinflammatory
  168. effects of [6]-gingerol, [8]-
  169. gingerol, [10]-gingerol and [6]-shogaol. J
  170. Ethnopharmacol . 127(2):515-20.
  171. Ghasemzadeh A., Jaafar HZ., Rahmat A.(2010).
  172. Antioxidant activities, total phenolics and
  173. flavonoids content in two varieties of Malaysia
  174. young ginger (Zingiber officinale Roscoe).
  175. Molecules .14: 15(6):4324-33.
  176. Ghasemzadeh A., Jaafar HZ., Rahmat A., Wahab
  177. PE., Halim MR.(2010). Effect of Different Light
  178. Intensities on Total Phenolics and Flavonoids
  179. Synthesis and Anti- oxidant Activities in Young
  180. Ginger Varieties (Zingiber officinale Roscoe).Int
  181. J Mol Sci . 11(10):3885-97.
  182. Ramadan G., Al-Kahtani MA., El-Sayed WM.
  183. (2011). Anti-inflammatory and anti-oxidant
  184. properties of Curcuma longa (turmeric) versus
  185. Zingiber officinale (ginger) rhizomes in rat
  186. adjuvant-induced arthritis. Inflammation .34(4):
  187. -301.
  188. Habib SHM., Makpol S., Hamid NA., Das D.,
  189. Ngah WZ., Yusof YAM. (2008). Ginger extract
  190. (Zingiber officinale) hasanti-cancerand antiinflammatory
  191. effects on ethionine-induced
  192. hepatomarats. Clinics. 63: 807- 13.
  193. van RB., Tao Y., Li W.(2011). Cyclooxygenase-
  194. inhibitors in ginger (Zingiber officinale).
  195. Fitoterapia .82(1):38-43.
  196. Nurtjahja-Tjendraputra E., Ammit AJ.,
  197. Roufogalis BD., Tran VH., Duke CC. (2003).
  198. Effective anti-platelet and COX-1 enzyme
  199. inhibitors from pungent constituents of ginger.
  200. Thromb Res . 111(4-5):259-65.
  201. Frondoza CG., Sohrabi A., Polotsky A., Phan
  202. PV., Hungerford DS., Lindmark L. (2004). An in
  203. vitro screening assay for inhibitors of
  204. proinflammatory mediators in herbal extracts
  205. using human synoviocyte cultures. In Vitro Cell
  206. Dev Biol Anim . 40(3-4):95-101.
  207. Tripathi S., Bruch D., Kittur DS. (2008). Ginger
  208. extract inhibits LPS induced macrophage
  209. activation and function. BMC Complement
  210. Altern Med . 8: 1.
  211. Black, C.D., O’Connor p.j. (2008). Short term
  212. effects of 2-grams of dietary ginger on muscle
  213. pain, inflammation and disability induced by
  214. eccentric exercise .The Journal of Pain . 9(4):25