Comparison the effects of 8 weeks of high intensity interval training and continuous trainingon CD62P expression and platelet indices in cardiovascular disease

Document Type : original article


The aim of this study was to compare the effects of 8 weeks of high intensity interval trainingandcontinuous training on CD62P expression and platelet indices in cardiovascular patients. Therefore, 30 CABG and PCI heart patient voluntary participated and divided into three groups (n=10): control, continuous and high-intensity interval group. Anthropometric characteristics and peak oxygen consumption was recorded before starting a workout. Each session was 40 minutes. Interval session consists of warm-up, 8 reps/ four min(exercise: 2min, active recovery: 2min, intensity: 90 /30) and cool down, but continues session includes 30 minutes of continuous exercise intensity activity with 60% of peak oxygen consumption. The control group did not have a regular activity. Blood samples taken before and after the eight-week and their p-selectin and platelet indices were measured. Repeated measure ANOVA with between group factor and multiple linear regression were used for statistical analysis. The results showed that P-selectin expression changes between the groups were significantly different (P=.013). Post-hoc test show that the changes between control and interval groups were significant (P=.011). But no significant changes were observed in all platelet indices (P>0.05).It is concluded that eight weeks of exercise leads to reduction in P-selectinexpression that was also affected by type of activity. Based on more effects of interval training in cardiovascular patients, use of interval training can be suggested in their rehabilitation program.


  1. T.S. Kickler. (2006). Platelet biology–an overview. Transfusion alternatives in transfusion medicine.8 (2): 79-85
  2. G. DavÃ‌ and C. Patrono. (2007). Platelet activation and atherothrombosis. New England Journal of Medicine.357 (24): 2482-2494
  3. H. Roberts and J. Lozier. (1992). New perspectives on the coagulation cascade. Hospital practice (Office ed.).27 (1): 97-105, 109-12
  4. Z. Li, M.K. Delaney, K.A. O'brien, and X. Du. (2010). Signaling during platelet adhesion and activation. Arteriosclerosis, thrombosis, and vascular biology.30 (12): 2341-2349
  5. J. Heemskerk, N. Mattheij, and J. Cosemans. (2013). Platelet‐based coagulation: different populations, different functions. Journal of Thrombosis and Haemostasis.11 (1): 2-16
  6. P. Mehta. (1984). Potential role of platelets in the pathogenesis of tumor metastasis. Blood.63 (1): 55-63
  7. J.M. Gibbins. (2004). Platelet adhesion signalling and the regulation of thrombus formation. Journal of Cell Science.117 (16): 3415-3425
  8. L.K. Jennings. (2009). Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost.102 (2): 248-257
  9. J.B. Bussel, T.J. Kunicki, and A.D. Michelson. (2000). Platelets: new understanding of platelet glycoproteins and their role in disease. ASH Education Program Book.2000 (1): 222-240
  10. A. Kasirer-Friede, M.R. Cozzi, M. Mazzucato, L. De Marco, Z.M. Ruggeri, and S.J. Shattil. (2004). Signaling through GP Ib-IX-V activates αIIbβ3 independently of other receptors. Blood.103 (9): 3403-3411
  11. S. Rahgozar, G. Pakravan, and K. Ghaedi. (2012). Cellular adhesions and signaling pathways in platelets. blood.1 (8): 14
  12. M.S. Chatterjee, Systems Biology of Blood Coagulation and Platelet Activation, in Chemical and Biomolecular Engineering, 2011, University of Pennsylvania: Pennsylvania. p. 206.
  13. F. Santilli, N. Vazzana, P. Iodice, S. Lattanzio, R. Liani, R.G. Bellomo, et al. (2012). Effects of high-amount–high-intensity exercise on in vivo platelet activation: Modulation by lipid peroxidation and AGE/RAGE axis. Thromb Haemost.108 (3): 533-542
  14. J.-S. Wang, Y.-S. Li, J.-C. Chen, and Y.-W. Chen. (2005). Effects of exercise training and deconditioning on platelet aggregation induced by alternating shear stress in men. Arteriosclerosis, thrombosis, and vascular biology.25 (2): 454-460
  15. F.K. Keating, D.J. Schneider, P.D. Savage, J.Y. Bunn, J. Harvey-Berino, M. Ludlow, et al. (2013). Effect of Exercise Training and Weight Loss on Platelet Reactivity in Overweight Patients With Coronary Artery Disease. Journal of cardiopulmonary rehabilitation and prevention.33 (6): 371-377
  16. P.D. Thompson. (2003). Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arteriosclerosis, thrombosis, and vascular biology.23 (8): 1319-1321
  17. M.J. Gibala, J.P. Little, M.J. Macdonald, and J.A. Hawley. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of physiology.590 (5): 1077-1084
  18. M. Rakobowchuk, S. Tanguay, K.A. Burgomaster, K.R. Howarth, M.J. Gibala, and M.J. Macdonald. (2008). Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.295 (1): R236-R242
  19. A. Zafeiridis, H. Sarivasiliou, K. Dipla, and I. Vrabas. (2010). The effects of heavy continuous versus long and short intermittent aerobic exercise protocols on oxygen consumption, heart rate, and lactate responses in adolescents. European journal of applied physiology.110 (1): 17-26
  20. J.A. Babraj, N.B. Vollaard, C. Keast, F.M. Guppy, G. Cottrell, and J.A. Timmons. (2009). Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders.9 (1): 3
  21. K.A. Burgomaster, S.C. Hughes, G.J. Heigenhauser, S.N. Bradwell, and M.J. Gibala. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology.98 (6): 1985-1990
  22. N.H. Ruslan, A.K. Ghosh, A.a.A. Razak, R. Hassan, and W.S. Wmz. effect of continuous and intermittent exercise training programs on platelet activation and fibrinolytic profile of sedentary males.
  23. T. Hilberg, V. Schmidt, W. Lösche, and H.H. Gabriel. (2003). Platelet activity and sensitivity to agonists after exhaustive treadmill exercise. Journal of sports science & medicine.2 (1): 15
  24. A. Choudhury, I. Chung, A.D. Blann, and G.Y. Lip. (2007). Platelet surface CD62P and CD63, mean platelet volume, and soluble/platelet P-selectin as indexes of platelet function in atrial fibrillation: a comparison of “healthy control subjects” and “disease control subjects” in sinus rhythm. Journal of the American College of Cardiology.49 (19): 1957-1964
  25. B. Nagy Jr, I.B. Debreceni, and J. Kappelmayer. flow cytometric investigation of classical and alternative platelet activation markers.
  26. J.-S. Wang, C.J. Jen, H. Kung, L.-J. Lin, T.-R. Hsiue, and H. Chen. (1994). Different effects of strenuous exercise and moderate exercise on platelet function in men. Circulation.90 (6): 2877-2885
  27. P. Meyer, M. Gayda, M. Juneau, and A. Nigam. (2013). High-intensity aerobic interval exercise in chronic heart failure. Current heart failure reports.10 (2): 130-138
  28. V.M. Conraads, N. Pattyn, C. De Maeyer, P.J. Beckers, E. Coeckelberghs, V.A. Cornelissen, et al. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. International journal of cardiology.179 203-210
  29. B. Takase, Y. Matsushima, A. Uehata, M. Ishihara, and A. Kurita. (2008). Endothelial dysfunction, carotid artery plaque burden, and conventional exercise-induced myocardial ischemia as predictors of coronary artery disease prognosis. Cardiovascular ultrasound.6 (1): 1
  30. N. Vinod, S. Rupinder, and C. Murugesan. (2004). Myocardial ischaemic pre-conditioning. Indian Journal of Anaesthesia.48 (2): 93
  31. L.M. Biskey, Effects of High Intensity Interval Training on Hemostasis and Fibrinolysis in Healthy Males: Relationship to Sympathetic Nervous System Activation, 2015, University of Toronto.
  32. L. Stoner, J.M. Young, S. Fryer, and M.J. Sabatier. (2012). The importance of velocity acceleration to flow-mediated dilation. International journal of vascular medicine.2012
  33. G. Girdhar and D. Bluestein. (2008). Biological effects of dynamic shear stress in cardiovascular pathologies and devices. Expert review of medical devices.5 (2): 167-181
  34. E.G. Ciolac. (2012). High-intensity interval training and hypertension: maximizing the benefits of exercise. Am J Cardiovasc Dis.2 (2): 102-10
  35. A. Fallahi, A. Gaeini, S. Shekarfroush, and A. Khoshbaten. (2015). Cardioprotective Effect of High Intensity Interval Training and Nitric Oxide Metabolites (NO2−, NO3−). Iranian journal of public health.44 (9): 1270
  36. S.H. Boutcher. (2010). High-intensity intermittent exercise and fat loss. Journal of obesity.2011
  37. K.D. Currie, J.B. Dubberley, R.S. Mckelvie, and M.J. Macdonald. (2013). Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc.45 (8): 1436-42
  38. K.G. Chamberlain, M. Tong, and D.G. Penington. (1990). Properties of the exchangeable splenic platelets released into the circulation during exercise‐induced thrombocytosis. American journal of hematology.34 (3): 161-168
  39. Y. Park, N. Schoene, and W. Harris. (2002). Mean platelet volume as an indicator of platelet activation: methodological issues. Platelets.13 (5-6): 301-306
  40. Z. Huczek, J. Kochman, K.J. Filipiak, G.J. Horszczaruk, M. Grabowski, R. Piatkowski, et al. (2005). Mean platelet volume on admission predicts impaired reperfusion and long-term mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. Journal of the American College of Cardiology.46 (2): 284-290
  41. S. Demirkol, S. Balta, M. Unlu, U.C. Yuksel, T. Celik, Z. Arslan, et al. (2012). Evaluation of the mean platelet volume in patients with cardiac syndrome X. Clinics.67 (9): 1019-1022
  42. S. Kırbaş, S. Teti̇K, E. Aaykora, and B. Duran. (2015). An examination of the impact of regular exercise participation on blood platelet parameters. World Journal of Medical Sciences.12 (2): 79-82
  • Receive Date: 12 March 2016
  • Revise Date: 25 May 2024
  • Accept Date: 31 December 2020
  • First Publish Date: 31 December 2020
  • Publish Date: 21 November 2016