همگرایی معادلات پیشگو در برآورد هزینه انرژی مصرفی با مدل مبنا در آزمون‌های درمانده ساز نوارگردان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار فیزیولوژی ورزشی دانشگاه محقق اردبیلی

2 کارشناس ارشد فیزیولوژی ورزشی دانشگاه محقق اردبیلی

چکیده

هدف از اجرای پژوهش حاضر، بررسی و مقایسه همگرایی معادلات پیشگو در برآورد هزینه انرژی مصرفی با مدل مبنا در آزمون درمانده‌ساز نوارگردان بود. روش تحقیق: تعداد 50 نفر از مردان جوان فعال(با میانگین ± انحراف معیار سنی 069/2±04/21 سال، قد 48/4±78/176 سانتی‌متر، وزن 825/5±11/70 کیلوگرم) به عنوان نمونه انتخاب و آزمون‌های بیشینه درمانده‌ساز نوارگردان را اجرا کردند. تجزیه و تحلیل متغیرهای بیوانرژتیک در طول اجرای پروتکل‌های درمانده‌ساز با استفاده از دستگاه تجزیه و تحلیل گازهای تنفسی به فاصله زمانی ده ثانیه جمع آوری شد. برای سنجش همگرایی، مقادیر اکسیژن مصرفی برآورد شده با استفاده مدل مبنا (روش تجزیه و تحلیل گازهای تنفسی) ومعادلات پیشگوی ACSM، واندروالت، پاندولف، لیگر و اپستین مورد مقایسه قرارگرفتند. برای ارزیابی همگرایی از مدل گرافیکی بلاند – آلتمن و روش همگرایی همبستگی درونی (ICC) استفاده شد. نتایج: حاکی از آنبودکه معادله‌یدویدن لیگرهمگرایی بالایی با روش مبنا دارد (لیگر:96/1± ،95%=CI، 2/21- تا 4/میلی لیتر/ کیلوگرم/ دقیقه 2، 89/0=ICC)و معادلات راه رفتن و دویدن ACSM همگرایی متوسطی با روش مبنا دارند(راه رفتن: 96/1± ،95% =CI، 1/8- تا 7/4میلی لیتر/ کیلوگرم/ دقیقه،  4837/0=ICC؛ دویدن:96/1±، 95% =CI،  6/27- تا 3/3- میلی لیتر/ کیلوگرم/ دقیقه، 4535/0=ICC). نتیجه‌گیری: براساس نتایج می‌توان گفت که معادلة دویدن لیگر در بین معالادت ارائه شدهدر برآورد حجم اکسیژن مصرفی و به طور نسبی معادلات راه رفتن و دویدن ACSMدر مردان جوان ایرانی می‌تواند به جای روش مبنامورد استفاده قرار گیرد. 

کلیدواژه‌ها


عنوان مقاله [English]

Agreement among the energy expenditure prediction equations with the criterion model in the exhaustive treadmill test protocols

چکیده [English]



Purpose: The aim of this study was to survey the agreements between the energy expenditure prediction equations with
the criterion model in the exhaustive treadmill test protocols in active young men. Methods:Fifty active young men were
selected as subjects (Mean ± SD Age 21.04 ± 2.069 yrs., Height 176.78 ± 4.484 cm, Weight 70.11 ± 5.825kg) and
completed exhaustive treadmill test protocols. Bioenergetical variables during exhaustive protocols using respiratory gas
analysis were collected at an interval of ten seconds. To estimate the energy cost and bioenergetical variables,ACSMv,
Vander Walt, Pandolf, Léger and Epstein predictive equations for walking and running were considered. Bland-Altman
graphical model and Interclass Correlation Coefficient (ICC) statistical tests were used to evaluate the absolute agreement
of the methods. Results:The results suggest that the Leger equation for running have high agreement with the criterion
model (±1.96; CI = 95% -21.2 to 2.4 ml/kg/min; ICC= 0.89)And ACSM walking and running equations have middleagreement
with the criterion model(Walking: ±1.96 ; 95% CI = -8.1to +4.7ml/kg/min,ICC= 0.4837;Running: ±1.96 ; 95%
CI = -27.6 to -3.3 ml/kg/min, ICC: 0.4535). Conclusions: According to study results it could be concluded that the Leger
equations for running and relativelyACSM walking and running equations estimating of VO2 among Iranian active young
men can be used as an accurate alternative for the criterion method.

کلیدواژه‌ها [English]

  • Maximum exhaustive test
  • Bioenergetical variables
  • Prediction equations
  • Energy expenditure
  1. Kenney WL, Wilmore J, Costill D. (2015).Physiology of Sport and Exercise 6th Edition: Human kinetics.
  2. Astorino T, Willey J, Kinnahan J, Larsson S, Welch H, Dalleck L.( 2005). Elucidating determinants of the plateau in oxygen consumption at o2max. British journal of sports medicine. 39(9):655-660.
  3. George JD, Paul SL, Hyde A, Bradshaw DI, Vehrs PR, Hager RL, et al. (2009). Prediction of maximum oxygen uptake using both exercise and non-exercise data. Measurement in Physical Education and Exercise Science. 12-1:(1)13.
  4. Lee J-M, Bassett Jr DR, Thompson DL, Fitzhugh EC. (2011). Validation of the Cosmed Fitmate for prediction of maximal oxygen consumption. The Journal of Strength & Conditioning Research. 25(9):2573-2579.
  5. Glass S, Dwyer GB, Medicine ACoS. (2007). ACSM'smetabolic calculations handbook: Lippincott Williams & Wilkins.
  6. American College of Sports Medicine. (2013). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.
  7. Van der Walt W, Wyndham C. (1973). An equation for prediction of energy expenditure of walking and running. Journal of Applied Physiology. 34(5):559-563.
  8. Pandolf K, Givoni B, Goldman R. (1976). Predicting energy expenditure with loads while standing or walking very slowly. J. Appl. Physiol. 43:577-581.
  9. Leger L, Mercier D. (1984). "Gross energy cost of horizontal treadmill and track running". Sports medicine. 1(4):270-277.
  10. Epstein Y, Stroschein L, Pandolf K. (1987). Predicting metabolic cost of running with and without backpack loads. European journal of applied physiology and occupational physiology. 56(5):495-500.
  11. Hall C, Figueroa A, Fernhall B, Kanaley JA. (2004). Energy expenditure of walking and running: comparison with prediction equations. Medicine and science in sports and exercise. 36(12): 2128-2134.
  12. Koutlianos N, Dimitros E, Metaxas T, Cansiz M, Deligiannis A, Kouidi E. (2013). Indirect estimation of VO2max in athletes by ACSM’s equation: valid or not? Hippokratia. 17(2):136.
  13. Magrani P, Pompeu FAMS. (2010). Equations for predicting aerobic power (VO2) of young Brazilian adults. Arquivos brasileiros de cardiologia. 94(6):763-770.
  14. Brutsaert TD, Parra EJ, Shriver MD, Gamboa A, Palacios J-A, Rivera M, et al. (2003). Spanish genetic admixture is associated with larger VO2 max decrement from sea level to 4,338 m in Peruvian Quechua. Journal of applied physiology. 95(2):519-528.
  15. Siahkouhian M, Hedayatneja M. (2010). Correlations of anthropometric and body composition variables with the performance of young elite weightlifters. Journal of Human Kinetics. 25:125-31.
  16. American College of Sports Medicine. (1991). Guidelines for graded exercise testing and training. Lea & Febiger, Philadelphia.
  17. Siahkouhian M, Meamarbashi A. (2013). Advanced methodological approach in determination of the heart rate deflection point: S. Dmax versus L. Dmax methods. The Journal of sports medicine and physical fitness. 53(1):27-33.
  18. Hofmann, P, Von Duvillard.S. P, et al. (2001). "Heart rate performance curve deflection." Medicine and Science in Sports and Exercise. 33:1726 -1737
  19.  
  20. Bland JM, Altman DG. (1999). Measuring agreement in method comparison studies. Statistical methods in medical research. 8(2): 135-160.
  21. Bartko JJ. (1966). The intraclass correlationcoefficient as a measure of reliability. Psychological reports. 19(1):3-11.
  22. Figueroa MA, Wicke J, Manning J, Escamilla P, Santillo N, Wolkstein J, et al. (2012). Validation of ACSM metabolic equations in an anti-gravity environment: A pilot study. International Journal of Applied. 2(7).
  23. Vinet A, Le Gallais D, Bouges S, Bernard P, Poulain M, Varray A, et al. (2002). Prediction of VO (2peak) in wheelchair-dependent athletes from the adapted Leger and Boucher test. Spinal Cord. 40(10):507-512.
  24. Weyand. P, Smith. R, Schultz. N,et al. (2013). Predicting metabolic rate across walking speed: one fit for all body sizes? The Journal of Appl Physiol 115: 1332–1342
  25. George JD, Bradshaw DI, Hyde A, Vehrs PR, Hager RL, Yanowitz FG. (2007). A maximal graded exercise test to accurately predict VO2max in 18–65-year-old adults. Measurement in Physical Education and Exercise Science. 11(3):149-60.
  26. Marsh CE. (2012). Evaluation of the American College of Sports Medicine submaximal treadmill running test for predicting VO2max. The Journal of Strength & Conditioning Research. 26(2): 548-554.
  27. Cunha FA, Catalao RP, Midgley AW, Gurgel J, Porto F, Farinatti PT. (2012). Do the speeds defined by the American College of Sports Medicine metabolic equation for running produce target energy expenditures during isocaloric exercise bouts? European journal of applied physiology. 112(8):3019-26.
  28. Agiovlasitis S, Motl RW, Fernhall B. (2010). Prediction of oxygen uptake during level treadmill walking in people with multiple sclerosis. Journal of rehabilitation medicine. 42(7):650-5.
  29. Nieman DC. (2003). Exercise testing and prescription: a health related approach: McGraw-Hill Companies. 63-65.
  30. Siahkouhian M, H. F. (2011). "Applied cardiorespiratory fitness tests
  31. Pivarnik JM, Bray MS, Hergenroeder AC, Hill RB, Wong WW. (1995). Ethnicity affects aerobic fitness in US adolescent girls. Medicine and science in sports and exercise. 27(12):1635-8.
  32. Vsetulova E, Bunc V. (2003). Effect of body composition on physical fitness and functional capacity in obese women. Casopis lekaru ceskych. 143(11):756-60; discussion 60-1.
  • تاریخ دریافت: 09 اسفند 1395
  • تاریخ بازنگری: 22 خرداد 1403
  • تاریخ پذیرش: 11 دی 1399
  • تاریخ اولین انتشار: 11 دی 1399
  • تاریخ انتشار: 01 آذر 1395