اثر تمرین تناوبی با شدت بالا در محیط طبیعی و گرم بر سطوح سرمی BDNF

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجو

2 استاد دانشگاه خوارزمی

چکیده

هدف: هدف از انجام این پژوهش تعیین اثر تمرین تناوبی با شدت بالا در محیط طبیعی و گرم بر تغییرات سطوح سرمی BDNF مردان سالم بود. روش­: 24 دانشجوی پسر رشته تربیت بدنی بطور تصادفی به سه گروه تمرین در محیط‌ گرم، تمرین در محیط طبیعی و کنترل تقسیم شدند. گروه تمرین 12 جلسه طی دو هفته متوالی تمرین کردند. مقادیر BDNF به روش الایزا سنجیده شد و داده‌ها با استفاده از روش آماری تحلیل واریانس یک­طرفه تحلیل شدند. یافته­ها: پس از یک جلسه فعالیت مقدار BDNF در دو گروه تمرینی در مقایسه با پیش­آزمون افزایش معناداری داشت. البته این تغییرات در گروه محیط گرم در مقایسه با محیط طبیعی تفاوت معناداری نداشت (p=0/262). علاوه بر این در دو گروه تمرینی بعد از گذشت دو هفته از فعالیت در مقدار BDNF افزایش معناداری مشاهده شد. همچنین دو هفته تمرین بر سطوحBDNF  بین گروه­های تمرینی و کنترل نیز تفاوت معنادار بوجود نیاورد (p=0/267). نتیجه­گیری: به نظر می­رسد که فعالیت تناوبی صرف­نظر از اینکه در محیط طبیعی یا گرم انجام گیرد باعث افزایش مقدارBDNF  می­شود. همچنین به نظر می­رسد تمرین در محیط گرم فشار نسبتا بالاتری را فراهم می­کند که شاید در طولانی مدت بتواند سازگاری­های گسترده­تری را ایجاد کند.

عنوان مقاله [English]

Effects of high intensity interval training in temperate and warm conditions on serum BDNF

چکیده [English]

Aim: Experiences associated with emotional health such as exercise lead to increased levels of Brain-derived Neurotrophic Factor and environment conditions affect the expression of this neurotrophin. The aim of this study was to determine the effect of High intensity interval training in warm and temperate environment on serum BDNF in healthy men. Methods: 24 students men of physical education were selected and According to VO2max estimation, organized in three groups: warm environment training, temperate environment training and control group. Subjects of experimental group trained 6 sessions per week for 2 weeks. serum BDNF was assessed using ELISA kits and the data were analyzed by one-way ANOVA. Results: The results show that one session high intensity interval activity in warm and temperate conditions induce significant increment in serum BDNF, However between training group, significant difference was not observed. Furthermore twelfth session of high intensity interval training in warm and moderate environments resulted in significant increment in serum BDNF, and no significant change in control group. Conclusion: Based on the results of the present study it seems that high intensity interval training is a stimulator for BDNF and activity under warm environments cannot induce further change in these two factors.

Duman RS .Synaptic plasticity and mood disorders. Molecular psychiatry. 2002; 7Suppl 1:S29-34 .
Nakagawa T, Tsuchida A, Itakura Y, Nonomura T, Ono M, Hirota F, et al. Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in
diabetic mice. Diabetes. 2000; 49(3): 436-44. 3. Ernfors P, Kucera J, Lee K, Loring J, Jaenisch R. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin- 3in knockout mice. The International journal of developmental biology. 1995; 39(5): 799-627. 4. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998; 37(12): 61-1553. 5. Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neuroscience letters. 2002; 328(3): 4-261. 6. Smith MA, Makino S, Kvetnansky R, Post RM. Effects of stress on neurotrophic factor expression in the rat brain. Annals of the New York Academy of Sciences. 1995; 9: 771-234. 7. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al. Ageing, fitness and neurocognitive function. Nature. 1999; 400(6743): 9-418. 8. Vaynman S, Gomez‐Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of neuroscience
research. 2006; 84(4): 715-699. 9. Schmolesky MT, Webb DL, Hansen RA. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. Journal of sports science & medicine. 2013; 12(3): 11-522. 10 . Ferris LT, Williams JS, Shen C-L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and science in sports and exercise. 2007; 39(4): 34-728. 11 . Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, et al. BDNF induction with mild exercise in the rat hippocampus. Biochemical and biophysical research communications. 2007; 358(4): 961-967. 12 . Satarifard S, Gaeini A, Choobineh C. Changes in Blood Cortisol and Lactate Levels in Athletes after One Exercise Session in Cold, Warm and Natural Environments. Iranian Journal of Endocrinology & Metabolism. 2012; 14(2): 169-177. 13 . Goekint M, Roelands B, Heyman E, Njemini R, Meeusen R. Influence of citalopram and environmental temperature on exercise-induced changes in BDNF. Neuroscience letters. 2011; 494(2): 150-40. 14 . Trost SG, Owen N, Bauman AE ,Sallis JF, Brown W. Correlates of adults' participation in physical activity: review and update. Medicine & Science in Sports & Exercise2002 .; 12: 1996-2001. 15 . Godin G, Desharnais R, Valois P, Lepage L, Jobin J, Bradet R. Differences in perceived barriers to exercise between high and low intenders: observations among different populations. American Journal of Health Promotion1994 . ; 8(4): 385-279. 16 . Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exercise and sport sciences reviews. 2008; 36(2): 63-58. 17 . Laursen PB .Training for intense exercise performance: high-intensity or high-volume training? Scandinavian journal of medicine & science in sports. 2010; 20(1): 10-2. 18 . Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces
mitochondrial biogenesis in human skeletal muscle: potential mechanisms. The Journal of physiology. 2010; 588(6): 22-1011. 19 . Babak F, Gharakhanlou R, Bayati M, Aghaalinezhad H, Mohebbi F. Effect of intensity interval training on aerobic, anaerobic and hematological performance indices on athletes. Sport and Exercise physiology. 1390; 16(9): 25-40. 20 . Bartlett JD, Close GL, MacLaren DP, Gregson W, Drust B, Morton JP. High-intensity interval
running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. Journal of sports sciences. 2011; 29(6): 53-547. 21 . Barzegar H, Vasdi E, Borjianfard M. The effects of different exercise training on Brain-derived neutrophic factor in rats. Journal of Tehran biological sciences. 1394; 6(23): 1-9. 22 . Dery N, Pilgrim M, Gibala M, Gillen J ,
Wojtowicz JM, MacQueen G, et al. Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Frontiers in neuroscience. 2013; 7(14): 7-56. 23 . Schmidt-Kassow M, Schädle S ,Otterbein S, Thiel C, Doehring A, Lötsch J, et al. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreport. 2012; 23(15): 889-701. 24 . De Lisio M, Phan N, Boreham DR, Parise G. Exercise-induced protection of bone marrow cells following exposure to radiation. Applied Physiology, Nutrition, and Metabolism. 2010; 36(1): 7-80. 25 . Watson P, Shirreffs SM, Maughan RJ. Blood-brain barrier integrity may be threatened by exercise in a warm environment. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2005; 288(6): 1689-94. 26 . Garcia C, Chen M, Garza A, Cotman C, Russo-Neustadt A. The influence of specific noradrenergic and serotonergic lesions on the expression of hippocampal brain-derived neurotrophic factor transcripts following voluntary physical activity. Neuroscience. 2003; 119(3): 32-721.