تأثیر هشت هفته تمرین هیپوکسی اینتروال بر سطح سرمی عامل نوروتروفیک مشتق از مغز زنان فعال

نوع مقاله : علمی - پژوهشی

نویسنده

ندارم دانشگاه خوارزمی

چکیده

هدف: در تحقیق حاضر تأثیرهشت هفته تمرین هیپوکسی اینتروال (روش کنترل تنفس) بر سطح سرمی عامل نوروتروفیک مشتق از مغزدر زنان فعال مورد بررسی قرار گرفت. روش شناسی: تعداد 14 نفر از زنان فعال به طور تصادفی در دو گروه کنترل(هفت نفر) و تجربی(هفت نفر) جایگزین شدند. گروه کنترل به مدت هشت هفته دویدن اینتروال را تحت شرایط عادی و گروه تجربی دویدن اینتروال را در شرایط هیپوکسی انجام دادند. نمونه‌ی خونی جهت تعیین مقدار سطوح سرمی عامل نوروتروفیک مشتق از مغز در آغاز دوره‌ی تمرینی و 24 ساعت پس از آخرین جلسهی تمرینی در هفته هشتم از هر دو گروه گرفته شد. برای بررسی نرمال بودن توزیع دادهها ازآزمون گلموگروف-اسمیرنوف و بررسی همگن بودن واریانس گروهها از آزمون لوین استفاده شد.برای تجزیه و تحلیل اطلاعات (مقایسه‌ی بین و درون‌گروهی) از روشهای آماری تیهمبسته و مستقل در سطح معناداری(05/0≥P) استفاده شد. نتایج: نتایج تحقیق نشان داد که سطوح سرمی عامل نروتروفیک مشتق از مغز پس از هشت هفته تمرین هیپوکسی اینتروال در مقایسه با تمرین اینتروال افزایش معناداری یافته است.در این راستا بررسیاختلاف بینگروهی نشان داد که بین پسآزمون گروه کنترل و تجربی اختلاف معنیداری وجود دارد (036/0≥P).همچنین نتایجبررسی اختلاف درونگروهی نشان داد که بین پیشآزمون و پسآزمون گروه کنترل بعد از هشت هفته دویدن اینتروال اختلاف معنیداری وجود نداشت (157/0P=)، در صورتی که در مورد گروه تجربی بعد از هشت هفته دویدن هیپوکسی اینتروال این اختلاف قابل ملاحظه بود (011/0≥P). بحث و نتیجه‌گیری: در مجموع، نتایج به دست آمده از این پژوهش به استناد داده‌های جمع‌آوری شده نشان داد که انجام هشت هفته تمرین هیپوکسی اینتروال نسبت به تمرین اینتروال بر افزایش سطح سرمی عامل نوروتروفیک مشتق از مغز زنان فعال تأثیر بیشتری داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of eight-week interval hypoxic training;IHT (breath control) on serum levels of brain-derived neurotrophic factor (BDNF) in active women

چکیده [English]

Abstract
Aim: In this research, the effect of eight-week interval hypoxic training (IHT; breath control) on serum levels of BDNF in active women was studied.
Methods: 14 active women were randomly divided into two groups including control (n=7) and experimental (n=7) groups. The women in the control group performed running interval training under normoxi condition and the subjects in the experimental group performed runnig interval under hypoxic condition (interval hypoxic training; IHT/breath control) for eight weeks. At the beginning of the survey and 24 hours after the last training session of the eighth week the blood samples of both groups were collected to determine serum BDNF levels. Kolmogorov-Smirnov and Leven's test were used to determine normal distribution of data and homogeneity variation of groups, respectively. For data analysis (within and between groups comparison), statistical methods including paired and independent-samples t-test at a significance level (p≤0.05) were used.
Results: The results showed a significant increase in serum levels of brain-derived neurotrophic factor (BDNF) after eight-week interval hypoxic training (IHT)compared to the interval training.
Conclusion: The results of the present study suggest interval hypoxic training has an additive effect in the serum levels of BDNF in active women.

Soppet, D., et al., The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell, 1991. 65(5): p. 895-903.
Cohen, S., R. Levi-Montalcini, and V. Hamburger, A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci USA, 1954. 40(10): p. 1014-1018.
Barde, Y.-A., D. Edgar, and H. Thoenen, Purification of a new neurotrophic factor from mammalian brain. The EMBO journal, 1982. 1(5): p. 549.
Szatmari, E., et al., Role of kinase suppressor of Ras-1 in neuronal survival signaling by extracellular signal-regulated kinase 1/2. The Journal of Neuroscience, 2007. 27(42): p. 11389-11400.
Chiaramello, S., et al., BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3‐K and MAP‐K signalling pathways. European Journal of Neuroscience, 2007. 26(7): p. 1780-1790.
Lang, U.E., et al., Correlation between serum brain-derived neurotrophic factor level and an in vivo marker of cortical integrity. Biological psychiatry, 2007. 62(5): p. 530-535.
Mizuno, M., et al., Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. The Journal of Neuroscience, 2000. 20(18): p. 7116-7121.
Duman, R., Synaptic plasticity and mood disorders. Molecular psychiatry, 2002.
Nakagawa, T., et al., Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes, 2000. 49(3): p. 436-444.
Lommatzsch, M., et al., The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of aging, 2005. 26(1): p. 115-123.
Donovan, M.J., et al., Neurotrophin and neurotrophin receptors in vascular smooth musclecells: regulation of expression in response to injury. The American journal of pathology, 1995. 147(2): p. 309.
Lommatzsch, M., et al., Abundant production of brain-derived neurotrophic factor by adult visceral epithelia: implications for paracrine and target-derived neurotrophic functions. The American journal of pathology, 1999. 155(4): p. 1183-1193.
Ventriglia, M., et al., Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed research international, 2013. 2013.
Lee, B.-H., et al., Decreased plasma BDNF level in depressive patients. Journal of affective disorders, 2007. 101(1): p. 239-244.
Jindal, R.D., et al., Decreased BDNF in patients with antipsychotic naive first episode schizophrenia. Schizophrenia research, 2010. 119(1): p. 47-51.
Gold, S.M., et al., Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. Journal of neuroimmunology, 2003. 138(1): p. 99-105.
Bejot, Y., et al., Time-dependent contribution of non neuronal cells to BDNF production after ischemic stroke in rats. Neurochemistry international, 2011. 58(1): p. 102-111.
Tapia-Arancibia, L., et al., Physiology of BDNF: focus on hypothalamic function. Frontiers in neuroendocrinology, 2004. 25(2): p. 77-107.
Skinner, J., Exercise Testing and Prescription for Special Cases. Philadelphia, Pa: Lea and Febiger, 1993.
Schmolesky, M.T., D.L. Webb, and R.A. Hansen, The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. Journal of sports science & medicine, 2013. 12(3): p. 502.
Ke, Z., et al., The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. 2011.
Jiang, Y., et al., Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience, 2011. 172: p. 398-405.
Farrell, P.A., et al., ACSM's advanced exercise physiology. 2012: Wolters Kluwer Health/Lippincott Williams & Wilkins.
Tang, S.W., et al., Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neuroscience letters, 2008. 431(1): p. 62-65.
de Melo Coelho, F.G., et al., Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Archives of gerontology and geriatrics, 2013. 56(1): p. 10-15.
Ekdahl, C.T., et al., Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences, 2003. 100(23): p. 13632-13637.
Jammes, Y., et al., Enhanced exercise‐induced plasma cytokine response and oxidative stress in COPD patients depend on blood oxygenation. Clinical physiology and functional imaging, 2008. 28(3): p. 182-188.
Liu, Y.F., et al., Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain‐derived neurotrophic factor and synaptotagmin I. The Journal of physiology, 2009. 587(13): p. 3221-3231.
Widenfalk, J., L. Olson, and P. Thoren, Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience research, 1999. 34(3): p. 125-132.
Schmidt-Kastner, R., et al., Transient changes of brain-derived neurotrophic factor (BDNF) mRNA expression in hippocampus during moderate ischemia induced by chronic bilateral common carotid artery occlusions in the rat. Molecular Brain Research, 2001. 92(1): p. 157-166.
Kim, M.-W., et al., Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain research, 2005. 1052(1): p. 16-21.