نوع مقاله : علمی - پژوهشی

نویسنده

دانشگاه ارومیه

چکیده

چکیدههدف از انجام این تحقیق بررسی تاثیر 8 هفته فعالیت تناوبی با شدت بالا بر فعالیت و تجمع و میزان فسفوریلاسیون VASPser239 پلاکتی در بیماران قلبی-عروقی بود. روش شناسی: به همین منظور تعداد 20 بیمار قلبی CABG و PCI که از زمان جراحی آنان کمتر از سه ماه گذشته بود به صورت داوطلبانه انتخاب و به دو گروه 10 نفره کنترل و تمرین تناوبی تقسیم شدند. یک هفته پس از اندازه گیری مشخصات آنتروپومتریکی و تعیین اوج اکسیژن مصرفی، آزمودنی ها به مدت 8 هفته و هفته ای 3 جلسه در تمرینات تناوبی شرکت کردند. طول هر جلسه 40 دقیقه بود که در جلسه اول شدت 75 به 15 درصد اوج اکسیژن مصرفی بود که هر دو هفته 5% افزایش یافته و در دو هفته پایانی به شدت 90 به 30 درصد رسید. گروه کنترل در طول دوره تحقیق فعالیت منظم ورزشی نداشتند. نمونه های خونی قبل و 48 ساعت پس از آخرین جلسه تمرینی اخذ شد. نمونه ها برای اندازه گیری تجمع پلاکتی، پی سلکتین و فسفوریلاسیون VASPser239 آنالیز شدند. از آزمون تی-مستقل برای تحلیل آماری داده ها استفاده شد. نتایج: تجزیه تحلیل آماری داده ها کاهش معنی داری را در تجمع پلاکتی و  بیان پی-سلکتین پلاکت گروه تمرین تناوبی در پاسخ به ADP  در مقایسه با گروه کنترل پس از انجام تمرینات تناوبی نشان داد (05/0P<). همچنین میزان فسفوریلاسیون VASPser239 در پاسخ به مهار کننده NO  در گروه تمرین تناوبی افزایش معنی داری یافت (05/0P<). بحث و نتیجه گیری: هشت هفته تمرین تناوبی باعث بهبود فاکتورهای مرتبط با فعالیت و مهار پلاکت در بیناران عروق کرونر گردید. به نظر میرسد بهبود عملکرد پلاکت در پاسخ به تمرینات منظم ناشی از کاهش بیان گیرنده CD62P سطح پلاکتی و افزایش حساسیت پلاکت به نیتریک اکساید ترشحی از بافت اندوتلیال باشد.

عنوان مقاله [English]

The effects of high intensity interval training on platelet aggregation and phosphorylation of VASPser239 in coronary heart patients

نویسنده [English]

  • Akbar Nouri-habashi

دانشگاه

چکیده [English]

Abstract

Background: The aim of this study was to investigate the effect of 8 weeks of high intensity interval training on platelet activation and aggregation and phosphorylation of VASPser239 in coronary heart patients. Material and method: Twenty CABG and PCI patient voluntarily selected and were randomly divided into two groups: control (N=10) and interval training (N=10) groups. Anthropometric characteristics and peak oxygen consumption was recorded a week before starting a workout. Then high intensity interval training group Subjects participated in 8 weeks of exercise training program consisted of three sessions per week. Subject in interval training group participated in interval session consists of warm-up, 8 reps/ four min (exercise: 2min, active recovery: 2min, intensity: 90 /30) and cool down. Each session lasted 40 min. Training intensity was 80/20% of peak oxygen consumption for first two weeks but gradually increased to 90/30% of peak oxygen consumption in last two weeks. The control group did not participate in regular exercises during this period. Blood samples were taken before and 48h after last exercise session and analyzed for platelet aggregation, CD62p expression and phosphorylation of VASPser239. Dependent and independent t-test was used for statistical analysis.
Results: Results showed the significantly difference between two groups in amount of decrease in platelet aggregation and CD62p expression in response to ADP (P

کلیدواژه‌ها [English]

  • Key words: High intensity interval training- platelet aggregation- p selectin- VASP phosphorylation
  1. Gurney D, Lip GY, Blann AD. A reliable plasma marker of platelet activation: does it exist? American journal of hematology. 2002;70(2):139-44.
  2. Scheinowitz M, Pakala R, Ben-Dor I, Lemesle G, Torguson R, Pichard AD, et al. Platelet reactivity in diabetic patients subjected to acute exercise stress test. Cardiovascular Revascularization Medicine. 2011;12(1):20-4.
  3. Ferreiro JL, Angiolillo DJ. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation. 2011;123(7):798-813.
  4. de Meirelles LR, Matsuura C, de Castro Resende A, Salgado ÂA, Pereira NR, Coscarelli PG, et al. Chronic exercise leads to antiaggregant, antioxidant and anti-inflammatory effects in heart failure patients. European journal of preventive cardiology. 2013:1-8.
  5. Jafri S, Ozawa T, Mammen E, Levine T, Johnson C, Goldstein S. Platelet function, thrombin and fibrinolytic activity in patients with heart failure. European heart journal. 1993;14(2):205-12.
  6. de Meirelles LR, Resende AdC, Matsuura C, Salgado Â, Pereira NR, Cascarelli PG, et al. Platelet activation, oxidative stress and overexpression of inducible nitric oxide synthase in moderate heart failure. Clinical and Experimental Pharmacology and Physiology. 2011;38(10):705-10.
  7. Kumar A, Kar S, Fay WP. Thrombosis, physical activity, and acute coronary syndromes. Journal of applied physiology. 2011;111(2):599-605.
  8. Hong S, Adler KA, Von Känel R, Nordberg J, Ziegler MG, Mills PJ. Prolonged platelet activation in individuals with elevated blood pressure in response to a moderate exercise challenge. Psychophysiology. 2009;46(2):276-84.
  9. Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. haematologica. 2009;94(5):700-11.
  10. Smolenski A. Novel roles of cAMP/cGMP‐dependent signaling in platelets. Journal of Thrombosis and Haemostasis. 2012;10(2):167-76.
  11. Suhr F, Porten S, Hertrich T, Brixius K, Schmidt A, Platen P, et al. Intensive exercise induces changes of endothelial nitric oxide synthase pattern in human erythrocytes. Nitric Oxide. 2009;20(2):95-103.
  12. Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circulation research. 2007;101(7):654-62.
  13. Aurigemma C, Fattorossi A, Sestito A, Sgueglia GA, Farnetti S, Buzzonetti A, et al. Relationship between changes in platelet reactivity and changes in platelet receptor expression induced by physical exercise. Thrombosis research. 2007;120(6):901-9.
  14. Wang J-S. Intense exercise increases shear-induced platelet aggregation in men through enhancement of von Willbrand factor binding, glycoprotein IIb/IIIa activation, and P-selectin expression on platelets. European journal of applied physiology. 2004;91(5-6):741-7.
  15. Kadoglou NP, Kostomitsopoulos N, Kapelouzou A, Moustardas P, Katsimpoulas M, Giagini A, et al. Effects of exercise training on the severity and composition of atherosclerotic plaque in apoE-deficient mice. Journal of vascular research. 2011;48(4):347-56.
  16. Ikarugi H, Taka T, Nakajima S, Noguchi T, Watanabe S, Sasaki Y, et al. Norepinephrine, but not epinephrine, enhances platelet reactivity and coagulation after exercise in humans. Journal of Applied Physiology. 1999;86(1):133-8.
  17. Chen Y-W, Chen J-K, Wang J-S. Strenuous exercise promotes shear-induced thrombin generation by increasing the shedding of procoagulant microparticles from platelets. Thrombosis & Haemostasis. 2010;104(2):293.
  18. Sakita S-y, Kishi Y, Numano F. Acute vigorous exercise attenuates sensitivity of platelets to nitric oxide. Thrombosis research. 1997;87(5):461-71.
  19. Di Massimo C, Scarpelli P, Penco M, Tozzi-Ciancarelli M. Possible involvement of plasma antioxidant defences in training-associated decrease of platelet responsiveness in humans. European journal of applied physiology. 2004;91(4):406-12.
  20. Demirel HA, Powers SK, Zergeroglu MA, Shanely RA, Hamilton K, Coombes J, et al. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Journal of Applied Physiology. 2001;91(5):2205-12.
  21. Warburton DE, McKenzie DC, Haykowsky MJ, Taylor A, Shoemaker P, Ignaszewski AP, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. The American journal of cardiology. 2005;95(9):1080-4.
  22. De Meirelles L, Mendes‐Ribeiro A, Mendes M, Da Silva M, John Clive Ellory J, Mann G, et al. Chronic exercise reduces platelet activation in hypertension: upregulation of the l‐arginine‐nitric oxide pathway. Scandinavian journal of medicine & science in sports. 2009;19(1):67-74.
  23. de Meirelles LR, Matsuura C, de Castro Resende A, Salgado ÂA, Pereira NR, Coscarelli PG, et al. Chronic exercise leads to antiaggregant, antioxidant and anti-inflammatory effects in heart failure patients. European journal of preventive cardiology. 2014;21(10):1225-32.
  24. Winter EM, Jones AM, Davison RR, Bromley PD, Mercer TH. Sport and Exercise Physiology Testing Guidelines: Volume I–Sport Testing: The British Association of Sport and Exercise Sciences Guide: Routledge; 2006.
  25. Lamprecht M, Moussalli H, Ledinski G, Leschnik B, Schlagenhauf A, Koestenberger M, et al. Effects of a single bout of walking exercise on blood coagulation parameters in obese women. Journal of applied physiology. 2013;115(1):57-63.
  26. Cadroy Y, Pillard F, Sakariassen KS, Thalamas C, Boneu B, Riviere D. Strenuous but not moderate exercise increases the thrombotic tendency in healthy sedentary male volunteers. Journal of applied physiology. 2002;93(3):829-33.
  27. Ahmadizad S, El-Sayed MS. The effects of graded resistance exercise on platelet aggregation and activation. Medicine and science in sports and exercise. 2003;35(6):1026-32.
  28. Kobusiak-Prokopowicz M, Kuliczkowski W, Karolko B, Prajs I, Mazurek W. Platelet aggregation and P-selectin levels during exercise treadmill test in patients with ischaemic heart disease. Kardiologia polska. 2006;64(10):1094-100; discussion 101.
  29. Wang J-S, Cheng L-J. Effect of Strenuous, Acute Exercise on α2-Adrenergic Agonist–Potentiated Platelet Activation. Arteriosclerosis, thrombosis, and vascular biology. 1999;19(6):1559-65.
  30. Aktories K, Jakobs KH. Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes vis α‐adrenoceptors. FEBS letters. 1981;130(2):235-8.
  31. Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports medicine. 2012;42(7):587-605.
  32. Ciolac EG. High-intensity interval training and hypertension: maximizing the benefits of exercise. Am J Cardiovasc Dis. 2012;2(2):102-10.
  33. Wang J-S, Li Y-S, Chen J-C, Chen Y-W. Effects of exercise training and deconditioning on platelet aggregation induced by alternating shear stress in men. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(2):454-60.
  34. Desgorces FD, Chennaoui M, Gomez-Merino D, Drogou C, Bonneau D, Guezennec CY. Leptin, catecholamines and free fatty acids related to reduced recovery delays after training. European journal of applied physiology. 2004;93(1-2):153-8.
  35. Ruslan NH, Ghosh AK, Razak AAA, Hassan R, WMZ WS. EFFECT OF CONTINUOUS AND INTERMITTENT EXERCISE TRAINING PROGRAMS ON PLATELET ACTIVATION AND FIBRINOLYTIC PROFILE OF SEDENTARY MALES.
  36. Brunini T, Moss M, Siqueira M, Meirelles L, Rozentul A, Mann G, et al. Inhibition of l‐arginine transport in platelets by asymmetric dimethylarginine and NG‐monomethyl‐l‐arginine: Effects of arterial hypertension. Clinical and experimental pharmacology and physiology. 2004;31(10):738-40.
  37. Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiological reviews. 2003;83(1):183-252.
  38. Brunini T, Resende A, Moss M, De Moura RS, Ribeiro A. L-arginine availability as a pathological mechanism in essential hypertension, chronic renal and heart failure. Vascular Disease Prevention. 2005;2(1):37-51.
  39. Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. European journal of applied physiology. 2003;89(3-4):337-43.
  40. Ridker PM, Buring JE, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation. 2001;103(4):491-5.
  41. Lee KW, Lip GY. Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: a systematic review. Archives of internal medicine. 2003;163(19):2368-92.
  42. Mongirdienė A, Kubilius R. Effect of physical training on indices of platelet aggregation and fibrinogen concentration in patients with chronic heart failure. Medicina. 2015;51(6):343-50.
  43. Calzi SL, Purich DL, Chang KH, Afzal A, Nakagawa T, Busik JV, et al. Carbon Monoxide and Nitric Oxide Mediate Cytoskeletal Reorganization in Microvascular Cells via Vasodilator-Stimulated Phosphoprotein Phosphorylation Evidence for Blunted Responsiveness in Diabetes. Diabetes. 2008;57(9):2488-94.
  44. Major TC, Handa H, Brisbois EJ, Reynolds MM, Annich GM, Meyerhoff ME, et al. The mediation of platelet quiescence by NO-releasing polymers via cGMP-induced serine 239 phosphorylation of vasodilator-stimulated phosphoprotein. Biomaterials. 2013;34(33):8086-96.
  45. Shah A, Passacquale G, Gkaliagkousi E, Ritter J, Ferro A. Platelet nitric oxide signalling in heart failure: role of oxidative stress. Cardiovascular research. 2011;91(4):625-31.
  46. Cuzzolin L, Lussignoli S, Crivellente F, Adami A, Schena F, Bellavite P, et al. Influence of an acute exercise on neutrophil and platelet adhesion, nitric oxide plasma metabolites in inactive and active subjects. International journal of sports medicine. 2000;21(04):289-93.