نوع مقاله : علمی - پژوهشی
نویسندگان
1 دانشگاه آیت اله العظمی بروجردی (ره)- گروه تربیت بدنی
2 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران
3 گروه بیوشیمی، انستیتو پاستور ایران
چکیده
هدف: هدف از این پژوهش، بررسی اثر تمرین استقامتی بر بیان میر-196 و میر-133 (miR-196a , miR-133a) در بافت چربی سفید زیر پوستی است. روش شناسی: 16 موش صحرایی نژاد ویستار به صورت تصادفی به دو گروه؛ 1)کنترل (تعداد:هشت) و 2) تمرین استقامتی (تعداد:هشت) تقسیم شدند. موشهای گروههای تمرینی، به مدت هشت هفته، تحت تمرین استقامتی تداومی بر روی نوارگردان قرار گرفتند. برای اندازهگیری بیان نسبی ژن های هدف از روش ریل تایم پی سی آر (Real Time–PCR) استفاده شد. نتایج: دادهها نشان داد که بیان نسبی ژن «پروتئین غیر جفت کننده یک» (UCP1) در گروه استقامتی در قیاس با گروه کنترل به صورت معناداری بیشتر بود (p <0/05). با این حال، بیان میر-196 و میر-133 (miR-196a , miR-133a) در گروه استقامتی در قیاس با گروه کنترل از نظر آماری تفاوت معناداری نداشت (P>0/05).نتیجهگیری: یافته های این مطالعه نشان داد که تمرین استقامتی تغییری در بیان میر-196 و میر-133 (miR-196a , miR-133a) در بافت چربی سفید زیرپوستی ایجاد نمی کند؛ دلالت بر این که «بیش تنظیمی بیان ژن پروتئین غیر جفت کننده یک (UCP1) ناشی از تمرین استقامتی»، با تغییرات بیان میر-196 و میر-133 مرتبط نیست.
کلیدواژهها
عنوان مقاله [English]
Effect of Endurance Training on miR-196a and miR-133a Expression in Subcutaneous White Adipose Tissue of Wistar Rats
نویسندگان [English]
- Saeed Daneshyar 1
- Mohammad Reza Kordi 2
- Mehdi Kadivar 3
- Samane Afshari 2
1 Department of Physical Education, University of Ayatollah Alozma Boroujerdi
2 Department of exercise physiology, Faculty of Physical Education and Sports Sciences,Tehran University
3 Department of Biochemistry, Pasteur Institute of Iran
چکیده [English]
Purpose: The aim of current study was to investigate the effect of endurance training on expression of miR-196a and miR-133a in subcutaneous white adipose tissue (WAT).
Methods: 16 wistar rats were divided into two groups included: 1) Control (n=8) and 2) Endurance Training (n=8). The subjects of training group underwent continues endurance training on treadmill for eight weeks. To measure of gene expression were used the Real Time (RT) –PCR method.
Results: Data showed that gene expression of UCP1 was significantly higher in trained group than control (P0.05).
Conclusions: The results of this study showed that the endurance training did not change the expression of miR-196a and miR-133a in subcutaneous WAT, indicating that the endurance training-induced the increase of UCP1 expression did not relate to change of miR-196a and miR-133a expression.
کلیدواژهها [English]
- endurance training
- miR 196a
- miR 133a
- White adipose tissue
- Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104(4):531-43.
- Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr. 2004;7(6):599-605.
- Dalgaard LT, Pedersen O. Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diab tologia. 2001;44(8):946-65.
- Schrauwen P, Walder K, Ravussin E. Human uncoupling proteins and obesity. Obes Res. 1999;7(1):97-105.
- Arechaga I, Ledesma A, Rial E. The mitochondrial uncoupling protein UCP1: a gated pore. IUBMB life. 2001;52(3-5):165-73.
- Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Frontiers in endocrinology. 2011;2:85.
- Walden TB. Regulatory factors that reveal three distinct adipocytes : the brown, the white and the brite. Stockholm: The Wenner-Gren Institute, Stockholm University, 2010.
- Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown,âbrite,â and white adipose tissues. Am J Physiol-Endoc M. 2012;302(1):E19-E31.
- Sluse FE, Jarmuszkiewicz W, Navet R, Douette P, Mathy G, Sluse-Goffart CM. Mitochondrial UCPs: new insights into regulation and impact. Biochim Biophys Acta. 2006;1757(5-6):480-5.
- Dalgaard L, Pedersen O. Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia. 2001;44(8):946-65.
- Kopecky J, Clarke G, Enerbäck S, Spiegelman B, Kozak L. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest. 1995;96(6):2914.
- Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell metabolism. 2009;9(2):203-9.
- Kozak LP, Harper ME. Mitochondrial uncoupling proteins in energy expenditure. Annu Rev Nutr. 2000;20:339-63.
- Brondani LA, Assmann TS, Duarte GC, Gross JL, Canani LH, Crispim D. The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 2012;56(4):215-25.
- Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta. 2013;1831(5):969-85.
- Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27(3):234-50.
- Ringholm S, Grunnet Knudsen J, Leick L, Lundgaard A, Munk Nielsen M, Pilegaard H. PGC-1alpha is required for exercise- and exercise training-induced UCP1 up-regulation in mouse white adipose tissue. PloS one. 2013;8(5):e64123.
- Knudsen JG, Murholm M, Carey AL, Bienso RS, Basse AL, Allen TL, et al. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PloS one. 2014;9(1):e84910.
- Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8.
- Stanford KI, Middelbeek RJW, Goodyear LJ. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes. 2015;64(7):2361-8.
- Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. American journal of physiology Regulatory, integrative and comparative physiology. 2011;300(5):R1115-25.
- Reisi j, H R, K G, S-M M, M-R D. Effect of 8 weeks resistance training on plasma irisin protein level and muscle FNDC5 and adipose tissue UCP1 genes expression in male rats. Sport Physiology. 2016;7(28):117-30.
- Reisi J, Ghaedi K, Rajabi H, Marandi SM. Can Resistance Exercise Alter Irisin Levels and Expression Profiles of FNDC5 and UCP1 in Rats? Asian J Sports Med.2016;7(4):e35205.
- Daneshyar S, Kordi MR, Gaeini AA, Kadivar M, Afshari S. The Effect of Endurance Training on Gene Expression of Uncoupling Protein 1(UCP-1) in Retroperitoneal White Adipose Tissue of Male Wistar Rats. Razi Journal of Medical Sciences. 2015;22(136):35-45.
- Daneshyar S, Kordi MR, Gaeini AA, Kadivar M, Afshari S. The Effect of Endurance Training on Gene Expression of Uncoupling Protein 1(UCP-1) in Retroperitoneal White Adipose Tissue of Male Wistar Rats. Razi Journal of Medical Sciences. 2015;22(136):35-45.
- Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8.
- Ketting RF. microRNA Biogenesis and Function. Regulation of microRNAs: Springer; 2010. p. 1-14.
- Zhou JY, Li L. MicroRNAs are key regulators of brown adipogenesis. Biochim Biophys Acta. 2014;1841(11):1590-5.
- Hilton C, Neville MJ, Karpe F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond). 2013;37(3):325-32.
- Chen J, Deng S, Zhang S, Chen Z, Wu S, Cai X, et al. The role of miRNAs in the differentiation of adipose-derived stem cells. Curr Stem Cell Res T. 2014;9(3):268-79.
- Trajkovski M, Lodish H. MicroRNA networks regulate development of brown adipocytes. Trends in endocrinology and metabolism: TEM. 2013;24(9):442-50.
- Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS biology. 2012;10(4):e1001314.
- Trajkovski M, Ahmed K, Esau CC, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol. 2012;14(12):1330-5.
- Liu W, Bi P, Shan T, Yang X, Yin H, Wang Y-X, et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 2013;9(7):e1003626.
- De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2013;23(6):582-90.
- Kraemer WJ, Rogol AD. The Endocrine System in Sports and Exercise. International Olympic Committee, 2006.
- Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38(5):401-23.
- Cousineau D, De Champlain J, Nadeau R. Plasma norepinephrine response to exercise before and after training in humans. Journal of Applied Physiology.1981;51(4): 812-815
- Rosell S, Belfrage E. Blood circulation in adipose tissue. Physiol Rev. 1979;59(4):1078-104.
- Berkowitz DE, Nardone NA, Smiley RM, Price DT, Kreutter DK, Fremeau RT, et al. Distribution of β 3-adrenoceptor mRNA in human tissues. Eur J Pharmacol. 1995;289(2):223-8.