تاثیر هشت هفته تمرین مقاومتی شدید و متوسط برMicroRNA های مرتبط با انتقال معکوس کلسترول در موش‌های سالمند نژاد ویستار

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشگاه شهرکرد

چکیده

چکیده:         هدف: سالمندی با اختلالات سیستیمیک در متابولیسم چربی و عوامل التهابی همراه است که به آترواسکروز منجر می شود .  هدف از این تحقیق بررسی تاثیر دو نوع تمرین مقاومتی شدید و متوسط بر MicroRNA های مرتبط با انتقال معکوس کلسترول در موش­های سالمند بود.          روش­­شناسی:30 سر رت نر نژاد ویستار مسن (23 ماهه) به صورت تصادفی در دو گروه تمرینی و یک گروه کنترل شامل گروه تمرین مقاومتی با شدت متوسط (10=n)، تمرین مقاومتی با شدت بالا (10=n) و گروه کنترل (10=n) قرار گرفتند. تمرین مقاومتی شامل 8 هفته تمرین مقاومتی نردبان با شدت زیاد ( 80% از MVCC ) و شدت متوسط (60% از MVCC) و 5 روز در هفته بود. بعد از دوره تمرین بیان miR-33a     و miR-144  و بیان پروتئین ABCA1 به روش RT –PCR اندازه گیری شد. تجزیه تحلیل آماری با استفاده از آزمون آنوا با سطح معنی­داری (p <0.05) انجام شد.نتایج: نتایج نشان داد   بیان miR-33a    و miR-144  در دو گروه مقاومتی شدید و مقاومتی متوسط کاهش داشت و بیان mRNA ژن ABCA1  در گروه مقاومتی شدید پس از هشت هفته تمرین  افزایش معناداری داشت(p <0.05). همچنین ، بین تاثیر تمرین مقاومتی شدید و متوسط بر بیان miR-33a    و miR-144  تفاوت معنی داری وجود نداشت. با این حال ، در مورد بیان mRNA ژن ABCA1 تفاوت معنی­داری در دو گروه مقاومتی شدید و متوسط مشاهده شد.نتیجه­ مگیری:به نظر می­رسدتمرین مقاومتی با شدت متوسط یا شدید می­تواند با کاهش بیان miR-33a و miR-144  باعث افزایش بیان mRNA ژن ABCA1  ­شود.

کلیدواژه‌ها


عنوان مقاله [English]

The ٍeffect of Eight Weeks of Moderate and High Intensity Resistance Training on micro-RNAs Associated with Reverse Cholesterol Transport in Older Wistar rats

نویسندگان [English]

  • mehdi taheri gandomany
  • Mohammad Faramarzi
  • Ebrahim Banitalebi
  • Rohollah Hemmati
Shahrekord University
چکیده [English]

Abstract:
Objective: Aging is associated with systemic dysfunctions in lipid metabolis and chronic inflammatory state which contribute to atherosclerotic. The purpose of this study was to investigate the effect of moderate and high intensity resistance training on micro-RNAs Associated with reverse cholesterol transport in Wistar elderly rats.
Method: 30 male Wistar rats (23 months old) were randomly divided into two experiment and one control group including moderate intensity resistance training (n = 10), high intensity resistance training (n = 10) and the control group (n = 10). Resistance training included 8 weeks of climbing a ladder with high intensity (80% MVCC) and moderate intensity (60% of MVCC) and 5 days a week. After completing training, expression of mir-33 and miR-144 and ABCA1 were measured RT-PCR . The statistical analysis was performed using Anova test with significance level of (P

کلیدواژه‌ها [English]

  • 33a
  • miR
  • 144
  • ABCA1
  • Atherosclerosis
Seres I, Paragh G, Deschene E, Fulop T, Khalil A. Study of factors influencing the decreased HDL associated PON1 activity with aging. Experimental Gerontology. 2004;39(1):59-66.
Rotllan N, Price N, Pati P, Goedeke L, Fernandez-Hernando C. microRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis. 2016;246:352-60.
Ono K, Horie T, Nishino T, Baba O, Kuwabara Y, Kimura T. Micrornas and high-density lipoprotein cholesterol metabolism. International heart journal. 2015;56(4):365-71.
Ono K, Horie T, Nishino T, Baba O, Kuwabara Y, Yokode M, et al. MicroRNA-33a/b in lipid metabolism - novel "thrifty" models. Circ J. 2015;79(2):278-84.
Ph.D. ATA, Student1, Ph.D.1* AG-N, Qomi MN, Ph.D.2, Moghanny MM, et al. The effect of running with bee pollen on muscle ABCA1 and APOA-1
mRNA expression in rats: brief report. Tehran University Medical Journal. 2016;74(7):530-4.
Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys. 2016;589:108-19.
de Aguiar Vallim T, Tarling E, Kim T, Civelek M, Baldan A, Esau C, et al. MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR. Circulation research. 2013:CIRCRESAHA. 112.300648.
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics. 2008;9(2):102-14.
Novak J, Bienertova-Vašků J, Kara T, Novak M. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediators of inflammation. 2014;2014.
Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nature reviews Molecular cell biology. 2012;13(4):239-50.
Baba O. MicroRNA-33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE-/-Mice. 2014.
Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921-31.
de Aguiar Vallim TQ, Tarling EJ, Kim T, Civelek M, Baldan Á, Esau C, et al. MicroRNA-144 Regulates Hepatic ATP Binding Cassette Transporter A1 and Plasma High-Density Lipoprotein After Activation of the Nuclear Receptor Farnesoid X ReceptorNovelty and Significance. Circulation research. 2013;112(12):1602-12.
Ramirez CM, Rotllan N, Vlassov AV, Davalos A, Li M, Goedeke L, et al. Control of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144Novelty and Significance. Circulation research. 2013;112(12):1592-601.
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Medicine. 2014;44(2):211-21.
B. K. Pedersen1, B. Saltin2. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006:63-3.
Aadahl M vHSL, Pisinger C, et al. . Five-year changein physical activity is associated with changes in cardiovascular
disease risk factors: the Inter99 study. Prev Med.
(4):326–31. 2009.
Kesaniemi Y DE, Jensen M, et al. Dose–response issues
concerning physical activity and health: an evidence-based
symposium. Med Sci Sports Exerc. 33(6 Suppl):S351–8. 2001.
Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Medicine and science in sports and exercise. 2001;33(6; SUPP):S502-S15.
Nybo L SE, Jakobsen M, et al. . High-intensity training
versus traditional exercise interventions for promoting health.
Med Sci Sports Exerc. 42(10):1951–8. 2010.
Dunn AL, Marcus BH, Kampert JB, Garcia ME, Kohl HW, Blair SN. Reduction in cardiovascular disease risk factors: 6-month results from ProjectActive. Preventive medicine. 1997;26(6):883-92.
LeMura LM, von Duvillard SP, Andreacci J, Klebez JM, Chelland SA, Russo J. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. European journal of applied physiology. 2000;82(5-6):451-8.
Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. New England Journal of Medicine. 2002;347(19):1483-92.
O'Donovan G, Owen A, Bird SR, Kearney EM, Nevill AM, Jones DW, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate-or high-intensity exercise of equal energy cost. Journal of applied physiology. 2005;98(5):1619-25.
Vatani DS, Ahmadi S, Dehrashid KA, Gharibi F. MINERVA MEDICA COPYRIGHT®. The Journal of sports medicine and physical fitness. 2011;51:695-700.
Ghanbari-Niaki A. Treadmill exercise training enhances ATP-binding cassette protein-A1 (ABCA1) expression in male rats’ heart and gastrocnemius muscles. Int J Endocrinol Metab. 2010;8(4):206-10.
Tofighi A, Rahmani F, Qarakhanlou BJ, Babaei S. The Effect of Regular Aerobic Exercise on Reverse Cholesterol Transport A1
and Apo Lipoprotein A-I Gene Expression in Inactive Women. Iran Red Crescent Med J 2015;17(4):e26321. 2015.
Vanhees L, Geladas N, Hansen D, Kouidi E, Niebauer J, Reiner Ž, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR (Part II). European journal of preventive cardiology. 2012;19(5):1005-33.
Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570-3.
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44(2):211-21.
de Cassia Marqueti R, Almeida JA, Nakagaki WR, Guzzoni V, Boghi F, Renner A, et al. Resistance training minimizes the biomechanical effects of aging in three different rat tendons. J Biomech. 2017;53:29-35.
Krug AL, Macedo AG, Zago AS, Rush JW, Santos CF, Amaral SL. High-intensity resistance training attenuates dexamethasone-induced muscle atrophy. Muscle Nerve. 2016;53(5):779-88.
Macedo AG, Krug AL, Herrera NA, Zago AS, Rush JW, Amaral SL. Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. J Steroid Biochem Mol Biol. 2014;143:357-64.
Kim SH, Kim GJ, Umemura T, Lee SG, Cho KJ. Aberrant expression of plasma microRNA-33a in an atherosclerosis-risk group. Mol Biol Rep. 2017;44(1):79-88.
Rotllan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice--brief report. Arterioscler Thromb Vasc Biol. 2013;33(8):1973-7.
Ramirez CM, Rotllan N, Vlassov AV, Davalos A, Li M, Goedeke L, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112(12):1592-601.
Marquart TJ, Allen RM, Ory DS, Baldan Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proceedings of the National Academy of Sciences. 2010;107(27):12228-32.
Karunakaran D, Thrush AB, Nguyen MA, Richards L, Geoffrion M, Singaravelu R, et al. Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis. Circ Res. 2015;117(3):266-78.
Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE−/− mice. Journal of the American Heart Association. 2012;1(6):e003376.
Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. The Journal of clinical investigation. 2011;121(7):2921-31.