تاثیر تمرین تناوبی شدید و تمرین تداومی بر عملکرد سلولهای بنیادی و ظرفیت خود نوزایی سلول های میوکاردموش های صحرایی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه تهران

2 دانشیار دانشگاه تهران

3 استادیار مرکز تحقیقات بافت و ژن پاسارگاد

چکیده

هدف: نشان داده شده که فعالیت ورزشی در بیشتر گونه های جانوری به افزایش و بهبود شاخص­های عملکردی قلبی منجر می شود. به نظر می­رسد که به دنبال انواع فعالیت ورزشی ظرفیت خود نوزایی قلبی از طریق افزایش تشکیل کاردیومیوسیت­های جدید افزایش می­یابد. مطالعه حاضر تاثیر تمرینات تناوبی شدید و تداومی بر عملکرد سلول های بنیادی و ظرفیت خود نوزایی قلبی را بررسی می­کند.روش شناسی: 24 عدد رت ویستار نر بالغ به سه گروه تمرین تناوبی شدید ،تداومی و کنترل تقسیم شدند. پروتکل های تمرینی 5 روز در هفته و 6 هفته اجرا شد. بافت قلب استخراج و مقادیر c-Kit و  Ki67 به روش ایمونوهیستوشیمی و بیان ژن  Nkx2.5به روش RealTime-PCR آنالیز شد. روش اماری تحلیل واریانس یک طرفه با معناداری  )05/0(P≤ استفاده شد. نتایج: افزایش معنادار سلول­های مثبت c-Kit در گروه تمرین HIIT )00/0(P≤ و در گروه تداومی )0۱۸/0(P≤  مشاهده شد که این افزایش در گروه HIIT بیشتر بود. افزایش معنادار سلول های مثبتKi67  در گروه تمرین HIIT )00/0(P≤ و گروه تداومی )05/0(P≤ مشاهده شد که این افزایش در گروهHIIT  بیشتر بود. همچنین افزایش معنادار بیان ژن  Nkx2.5در گروه تمرین HIIT )015/0(P≤و در گروه تداومی )03/0(P≤ مشاهده شد که این افزایش در گروه تداومی بیشتر بود. بحث و نتیجه گیری:به نظر می رسدتمرینات ورزشی از طریق افزایش تکثیر سلول­های بنیادی در قلب بازسازی قلب را آغاز کرده و متعاقب آن تمایزc-Kit را فعال و بیان ژن Nkx2.55 را که دو عامل اصلی رونویسی اولیه دودمان قلب هستند افزایش می­دهد؛ که موجب تولید سلولهای جدید قلب می­شود. 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of high intensity interval and continues training on cardiac stem cells function and myocardial regeneration capacity in male rats

نویسندگان [English]

  • AREZOO ESKANDARI SHAHRABI 1
  • rahman sori 2
  • siroos chobineh 2
  • zohre mazaheri tirani 3
1 tehran university
2 tehran university
3 pasargad institute
چکیده [English]

Purpose: have shown that exercise in many species leads to increase and improvement in cardiac function. It seems that variety of exercise increases the myocardial regeneration capacity by increasing the formation of new cardiomyocytes. The present study examines the effect of high intensity interval and continues training on cardiac stem cells function and myocardial regeneration capacity in male rats. Methods: Twenty four Vistars male rats were divided into three groups HIIT,continuous and control. The protocol training were performed 5 sessions per week for 6 weeks.The heart rats were extracted and c-Kit and Ki67 values were analyzed by Immunohistochemistry and Nkx2.5 gene expression for cardiac stem cells was measured by Real Time-PCR. The data were analyzed by one way ANOVA (P≤0.05). Results: According to the results of this study, there was a significant increase in c-Kit cells in the HIIT (P≤0.00) and in the continuous group (P≤0.018) and Significant increase in positive Ki67 cells in the HIIT group (P≤0.00) and continuous group (P≤0.05. this increase was greater in the HIIT group. As well as a significant increase was observed in the expression of Nkx2.5 gene expression in the HIIT training group (P≤0.015) and in the continuing group (P≤0.03) which increased in the continuous group was grater.Conclusion It seems exercises training induce heart regeneration through increased stem cell proliferation, c-Kit differentiation and increases gene expression of Nkx2.5, which are the two primary causes of the early regeneration of the heart, that lead to production of new cells in heart tissue.

کلیدواژه‌ها [English]

  • HIIT Training
  • continuous Training
  • Cardiac Stem Cells
  • C
  • Kit
  • Nkx2.5
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98-102.
Kajstura J, Rota M, Cappetta D, Ogorek B, Arranto C, Bai Y, et al. Cardiomyogenesis in the aging and failing human heart. Circulation. 2012:CIRCULATIONAHA. 112.118380.
Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. cell. 2000;100(1):157-68.
Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. 1963.
Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474(7353):640-4.
Vincent SD, Buckingham ME. Chapter One-How to Make a Heart: The Origin and Regulation of Cardiac Progenitor Cells. Current topics in developmental biology. 2010;90:1-41.
Torella D, Ellison G, Karakikes I, Nadal-Ginard B. Resident cardiac stem cells. Cell Mol Life Sci. 2007;64(6):661-73.
Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell stem cell. 2011;9(6):527-40.
Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit pos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827-42.
Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European heart journal. 2012:ehs338.
Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763-76.
Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009;459(7247):708-11.
Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599-604.
Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, et al. Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental biology. 2003;262(2):206-24.
Chen G-C, Ruan Z-B, Yin Y-G, Zhu L. The mechanism underlying the differentiation of human umbilical cord-derived mesenchymal stem cells into myocardial cells induced by 5-azacytidine. Indian journal of medical sciences. 2010;64(9):402.
Ruan Z, Zhu L, Yin Y, Chen G. Overexpressing NKx2. 5 increases the differentiation of human umbilical cord drived mesenchymal stem cells into cardiomyocyte-like cells. Biomedicine & Pharmacotherapy. 2016;78:110-5.
Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panakova D, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072-83.
Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European heart journal. 2012;35(39):2722-31.
Xiao J, Xu T, Li J, Lv D, Chen P, Zhou Q, et al. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International journal of clinical and experimental pathology. 2014;7(2):663.
Ellison GM, Galuppo V, Vicinanza C, Aquila I, Waring CD, Leone A, et al. Cardiac stem and progenitor cell identification: different markers for the same cell. Front Biosci (Schol Ed). 2010;2:641-52.
Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2011:heartjnl-2011-300639.
Thomas C, Bishop D, Moore-Morris T, Mercier J. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. American Journal of Physiology-Endocrinology and Metabolism. 2007;293(4):E916-E22.
Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433-8.
Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiological reviews. 2005;85(4):1373-416.
Leite CF, Lopes CS, Alves AC, Fuzaro CSC, Silva MV, de Oliveira LF, et al. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart. Stem cell research. 2015;15(1):151-64.
Waring CD, Henning BJ, Smith AJ, Nadal‐Ginard B, Torella D, Ellison GM. Cardiac adaptations from 4 weeks of intensity‐controlled vigorous exercise are lost after a similar period of detraining. Physiological reports. 2015;3(2):e12302.
Ellison G, Mendicino I, Sacco W, Purushothaman C, Indolfi C, Goldspink D, et al. Exercise-induced cardiac stem cell activation and ensuing myocyte hyperplasia contribute to left ventricular remodelling. Proceedings of The Physiological Society–Heart and Cardiac Muscle Abstracts. 2008;11:C17.
Thijssen DH, Vos JB, Verseyden C, Van Zonneveld AJ, Smits P, Sweep FC, et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging cell. 2006;5(6):495-503.
Park J-H, Miyashita M, Kwon Y-C, Park H-T, Kim E-H, Park J-K, et al. A 12-week after-school physical activity programme improves endothelial cell function in overweight and obese children: a randomised controlled study. BMC pediatrics. 2012;12(1):111.
Walther C, Gaede L, Adams V, Gelbrich G, Leichtle A, Erbs S, et al. Effect of increased exercise in school children on physical fitness and endothelial progenitor cells. Circulation. 2009;120(22):2251-9.