Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98-102.
Kajstura J, Rota M, Cappetta D, Ogorek B, Arranto C, Bai Y, et al. Cardiomyogenesis in the aging and failing human heart. Circulation. 2012:CIRCULATIONAHA. 112.118380.
Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. cell. 2000;100(1):157-68.
Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. 1963.
Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474(7353):640-4.
Vincent SD, Buckingham ME. Chapter One-How to Make a Heart: The Origin and Regulation of Cardiac Progenitor Cells. Current topics in developmental biology. 2010;90:1-41.
Torella D, Ellison G, Karakikes I, Nadal-Ginard B. Resident cardiac stem cells. Cell Mol Life Sci. 2007;64(6):661-73.
Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell stem cell. 2011;9(6):527-40.
Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit pos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827-42.
Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European heart journal. 2012:ehs338.
Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763-76.
Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009;459(7247):708-11.
Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599-604.
Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, et al. Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental biology. 2003;262(2):206-24.
Chen G-C, Ruan Z-B, Yin Y-G, Zhu L. The mechanism underlying the differentiation of human umbilical cord-derived mesenchymal stem cells into myocardial cells induced by 5-azacytidine. Indian journal of medical sciences. 2010;64(9):402.
Ruan Z, Zhu L, Yin Y, Chen G. Overexpressing NKx2. 5 increases the differentiation of human umbilical cord drived mesenchymal stem cells into cardiomyocyte-like cells. Biomedicine & Pharmacotherapy. 2016;78:110-5.
Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panakova D, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072-83.
Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European heart journal. 2012;35(39):2722-31.
Xiao J, Xu T, Li J, Lv D, Chen P, Zhou Q, et al. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International journal of clinical and experimental pathology. 2014;7(2):663.
Ellison GM, Galuppo V, Vicinanza C, Aquila I, Waring CD, Leone A, et al. Cardiac stem and progenitor cell identification: different markers for the same cell. Front Biosci (Schol Ed). 2010;2:641-52.
Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2011:heartjnl-2011-300639.
Thomas C, Bishop D, Moore-Morris T, Mercier J. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. American Journal of Physiology-Endocrinology and Metabolism. 2007;293(4):E916-E22.
Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433-8.
Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiological reviews. 2005;85(4):1373-416.
Leite CF, Lopes CS, Alves AC, Fuzaro CSC, Silva MV, de Oliveira LF, et al. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart. Stem cell research. 2015;15(1):151-64.
Waring CD, Henning BJ, Smith AJ, NadalâGinard B, Torella D, Ellison GM. Cardiac adaptations from 4 weeks of intensityâcontrolled vigorous exercise are lost after a similar period of detraining. Physiological reports. 2015;3(2):e12302.
Ellison G, Mendicino I, Sacco W, Purushothaman C, Indolfi C, Goldspink D, et al. Exercise-induced cardiac stem cell activation and ensuing myocyte hyperplasia contribute to left ventricular remodelling. Proceedings of The Physiological SocietyâHeart and Cardiac Muscle Abstracts. 2008;11:C17.
Thijssen DH, Vos JB, Verseyden C, Van Zonneveld AJ, Smits P, Sweep FC, et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging cell. 2006;5(6):495-503.
Park J-H, Miyashita M, Kwon Y-C, Park H-T, Kim E-H, Park J-K, et al. A 12-week after-school physical activity programme improves endothelial cell function in overweight and obese children: a randomised controlled study. BMC pediatrics. 2012;12(1):111.
Walther C, Gaede L, Adams V, Gelbrich G, Leichtle A, Erbs S, et al. Effect of increased exercise in school children on physical fitness and endothelial progenitor cells. Circulation. 2009;120(22):2251-9.